
DAT060
2016-09-02

LV 1, Lecture 2

1 Propositional Logic
∧ - conjunction (and)
∨ - disjunction (or)
→ - implication (if – then)
⊥ - absurdity (can never be true)
¬ - negation (not)
φ1,φ2,... ` ψ - we can derive ψ from φ1,φ2,...

1.1 Formulas
Formulas are built from atomic formulas (atomic formulas usually represented
by lower case letters: pi,qj , ...) by using the connectives ∧, ∨, →, ⊥, and ¬.
For instance: (p → q) ∨ (q ∧ r).

1.2 Natural deduction (Gentzen)
There are two kinds of rules: an introduction rule, and an elimination rule.

1.2.1 ∧ - introduction

If we have concluded φ and ψ separately, conjunction allows to conclude φ∧ ψ.

φ ψ
∧i

φ ∧ ψ

1.2.2 ∧ - elimination

You can eliminate or introduce each connectives given certain rules. The rules
for ’and-elimination’ are:

φ ∧ ψ ∧e1
φ

φ ∧ ψ ∧e2
ψ

1

The rule ∧e1says that if you have a proof of φ ∧ ψ, you can apply this rule
and get a proof of φ. ∧e2 is analogous for ψ.

Example Show that φ∧ψ `ψ ∧ φ
1 φ ∧ ψ premise

2 ψ ∧e2 1

3 φ ∧e1 1

4 ψ ∧ φ ∧i 2, 3

1.2.3 → - introduction

If we assume φ and eventually show ψ, we can introduce an implication.

[φ]
...
ψ

→ i
φ→ ψ

1.2.4 → - elimination

φ φ→ ψ → e
ψ

Example Show that φ →(ψ1 ∧ ψ2) `φ→ψ1

1 φ→ (ψ1 ∧ ψ2) premise

2 φ assumption

3 ψ1 ∧ ψ2 →e 2,1

4 ψ1 ∧e1 3

5 φ→ ψ1 →i 2–4

1.2.5 ⊥- introduction

You can never introduce an absurdity, hence there is no rule to do it.

1.2.6 ⊥ - elimination

The rule of ⊥ - elimination states that if you have an absurdity you can deduce
anything.

⊥ ⊥e
φ

2

1.2.7 ¬¬ - introduction and elimination

“It is raining” is the same thing as “it is not not raining”.

¬¬φ ¬¬e
φ

φ
¬¬i¬¬φ

Example φ ` ¬¬ φ (i.e.) φ ` (φ →⊥)→⊥

1 φ premise

2 φ→ ⊥ assumption

3 ⊥ →e 1, 2

4 (φ→ ⊥) → ⊥ →i 2–3

Example φ ∧ ¬φ ` ψ

1 φ ∧ ¬φ premise

2 φ ∧e1 1

3 φ→ ⊥ ∧e2 1 (definition of ¬φ is φ→ ⊥)

4 ⊥ →e 2, 3

5 ψ ⊥e 4

1.2.8 ∨ - introduction

φ ∨i1
φ ∨ ψ

ψ ∨i2
φ ∨ ψ

1.2.9 ∨ - elimination

φ ∨ ψ

[φ]
...
χ

[ψ]
...
χ

∨eχ

3

Example φ ∨ ψ ` ψ ∨ φ

1 φ ∨ ψ premise

2 φ assumption

3 ψ ∨ φ ∨i2 2

4 ψ assumption

5 ψ ∨ φ ∨i1 4

6 ψ ∨ φ ∨e 1, 2–3, 4–5

1.2.10 Proof by Contradiction

PBC says that if we from ¬φ obtain a contradiction, then we are entitled to
deduce φ. Note that Jan defines ¬p as p → ⊥.

[¬φ]
...
⊥

PBC
φ

Example ¬¬φ ` φ

1 ¬¬φ premise

2 ¬φ assumption

3 ⊥ →e 2, 1

4 φ PBC 2–3

4

DAT060
2016-09-02

LV 1, Lecture 3

1 Exercises

1.1 Express the following sentences, in English, using propo-
sitional logic.

1.1.1 “Today it will rain or shine, but not both.”

p: It will rain.
q: It will shine.

(p ∨ q) ∧ ¬ (p ∧ q)

1.1.2 “If the barometer falls, it will either rain or snow.”

p: Barometer falls.
q: It will rain.
r: It will snow.

p → (q ∨ r)

Note that “or” is usually meant as xor: p → (q ∨ r) ∧ ¬ (q ∧ r)

1.2 Recall conventions about tightness
Ranked in order:

1. ¬ binds the tightest

2. ∧, ∨ binds equally tight

3. → is right associative: p → q →r is (p →(q → r))

1.2.1 (p → q) ∧ ¬ (r ∨ p →q)

Should really be: ((p → q) ∧ (¬ ((r ∨ p) →q)))

1

1.2.2 (p → q) → r → s ∨ t

Sholud really be: ((p → q) → (r → (s ∨ t)))

1.3 Show that the following sequents are valid
1.3.1 p ∧ q ` q ∧ p

1 p ∧ q premise

2 q ∧e2 1

3 p ∧e1 1

4 q ∧ p ∧i 2–3

1.3.2 (p ∧ q) ∧ r, s ∧ t ` q ∧ s

1 (p ∧ q) ∧ r premise

2 s ∧ t premise

3 p ∧ q ∧e1 1

4 q ∧e2 3

5 s ∧e1 2

6 q ∧ s ∧i 4, 5

1.3.3 p → (p → q), p ` q

1 p→ (p→ q) premise

2 p premise

3 p→ q →e 1, 2

4 q →e 3, 2

1.3.4 p → q, q → r ` p → r

1 p→ q premise

2 q → r premise

3 p assumption

4 q →e 1, 3

5 r →e 2, 4

6 p→ r →i 3–5

2

1.3.5 ` p → (q → p)

1 p assumption

2 q assumption

3 p copy 1

4 q → p →i 2–3

5 p→ (q → p) →i 1–4

1.3.6 p ∧ q ` p ∨ q

1 p ∧ q premise

2 p ∧e1 1

3 p ∨ q ∨i1 2

1.3.7 (p ∨ (q → p)) ∧ q ` p

1 (p ∨ (q → p)) ∧ q premise

2 p ∨ (q → p) ∧e1 1

3 q ∧e2 1

4 p assumption

5 q → p assumption

6 p →e 5, 3

7 p ∨e 2, 4, 5–6

3

1.3.8 p → r, q → s ` p ∨ q → r ∨ s

1 p→ r premise

2 q → s premise

3 p ∨ q assumption

4 p assumption

5 r →e 1, 4

6 r ∨ s ∨i1 5

7 q assumption

8 s →e 2, 7

9 r ∨ s ∨i2 8

10 r ∨ s ∨e 3, 4–6, 7–9

11 p ∨ q → r ∨ s →i 3–10

1.3.9 ¬ p ` p → q

1 p→ ⊥ premise

2 p assume

3 ⊥ →e 1, 2

4 q ⊥e 3

5 p→ q →i 2–4

1.3.10 ¬(p → q) ` q → p

1 ¬(p→ q) premise

2 q assumption

3 p assumption

4 q copy 2

5 p→ q →i 3–4

6 ⊥ →e 1, 5

7 p ⊥e 6

8 q → p →i 2–7

4

1.4 Show: ` φ ∨ ¬φ (Law of excluded middle)

1 ¬(φ ∨ ¬φ) assumption

2 φ assumption

3 φ ∨ ¬φ ∨i1 2

4 ⊥ →e 1, 3

5 φ→ ⊥ →i 2–4

6 φ ∨ ¬φ ∨i2 5

7 ⊥ →e 1, 6

8 φ ∨ ¬φ PBC 1–7

1.4.1 ¬p → p ` p

1 ¬p→ p premise

2 ¬p assumption

3 p →e 1, 3

4 ⊥ →e 2, 4

5 p PBC 2–4

1.4.2 p ∨ q ` (p → q) → q

1 p ∨ q premise

2 p→ q assumption

3 p assumption

4 q →e 2, 3

5 q assumption

6 q ∨e 1, 3–4, 5

7 (p→ q) → q →i 2–6

5

1.4.3 (p → q) → q ` p ∨ q

1 (p→ q) → q premise

2 ¬(p ∨ q) assume

3 p assume

4 p ∨ q ∨i1 3

5 ⊥ →e 2, 4

6 q ⊥e 5

7 p→ q →i 3–6

8 q →e 1, 7

9 p ∨ q ∨i2 8

10 ⊥ →e 2, 9

11 p ∨ q PBC 2–10

6

DAT060
2016-09-06

LV 2, Lecture 1

1 Inductive Definitions

1.1 Example: The set of natural numbers (N)
Assume that we have got two constructors: 0 and a successor of 0.
We also have rules:

1. 0 ∈ N

2. if m ∈ N then succ(m) ∈ N

2 Definition by recursion

2.1 Example: The factorial function, n!
Given n!, fac(n), we can define the function as:

fac(0)=1
fac(succ(n))=succ(n)*fac(n)

3 Inductive definition
Inductive definition of the set F, of propositional formulas (Def 1.27, p 32).

• Atoms, including ⊥, are formulas. I.e. elements of F.

• If φ ∈ F and ψ ∈F then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) and (¬φ) are elements
of F.

3.1 Example: Definition by recursion of the function par()
par() computes the number of parantheses in an expression.

1. par(φ) = 0 (if φ is an atomic formula)

1

2. par(composite expression)

(a) par((φ ∧ ψ)) = par(φ) + par(ψ) + 2

(b) par((φ ∨ ψ)) = par(φ) + par(ψ) + 2

(c) par((φ→ ψ)) = par(φ) + par(ψ) + 2

(d) par((¬φ)) = par(φ) + 2

4 Semantics
Semantics can be expressed in various ways.

• Truth values

• Pruportions defined by laying down what ... Constructivism(?)

4.1 Truth Tables
φ ψ φ ∧ ψ φ ∨ ψ φ→ ψ ¬φ
T T T T T F
T F F T F F
F T F T T T
F F F F T T

4.1.1 Definition: How to compute the truth table (Def 1.28, p 37)

You can view each row in a truth table as a line describing something about the
world. You are assigning either T or F to an atom.

A valuation v is a function from the set of atoms to the set of truth values:

v : {p, q, r, ..., p1, p2, ...} →{T, F}

v can be extended to the set F of propositional formulas by recursion on F
using the truth table. So we extend v to every propositional formula.

v: F →{T, F}

• v is already defined on the atoms, and we put v(⊥)=F

• v(φ ∧ ψ) =

{
T if v(φ) = v(ψ) = T

F otherwise

• v(φ ∨ ψ) =

{
F if v(φ) = v(ψ) = F

T otherwise

2

• v(φ→ ψ) =

{
F if v(φ) = T and v(ψ) = F

T otherwise

We will occasionally use the notation [|φ|]v for v(φ). Semantic brackets by Dana
Scott.

4.2 Soundness
The implication from right to left: ⇐, is called soundness. It can be proved by
induction on the length of the proof of ψ from φ1, ..., φn. (The proof can be
found in the book.)

4.3 Completeness
The implication from left to right: ⇒, is called completeness. (The proof can
be found in the book.)

4.4 Definition 1.34, p 46
If for all evalutations in which all φ1, ..., φn evaluates to T, ψ evaluates to T
as well. We say that φ1,...,φn |= ψ holds and call |= the semantic entailment
notation.

Alternative notation:

[|φ1|]v = ... = [|φn|]v= T, then [|ψ|]v=T

4.4.1 Example

p ∧ q |= p

p, q |= p

p ∨ q 6|= p (p=F and q=T)

4.5 The Constructive Semantics{} of Propositional Logic
in terms of proofs

says that if:

we can prove then
φ ∧ ψ we can prove φ and prove ψ
φ ∨ ψ we can prove φ or we can prove ψ
φ→ ψ we can give a method which to each proof of φ gives o proof of ψ
⊥ nothing comes as a proof of ⊥

3

What about φ ∨ ¬φ (Law of Exclude the Middle - LEM)? If it is true con-
structively, we should be able to prove either φ or ¬φ. This has not been done,
yet.

4

DAT060
2016-09-09

LV 2, Lecture 2

1 Propositional Logic
Semantics:

• The meaning of a proposition is its truth value. (T or F)

• A proposition is given by laying down what comes as a proof of it. (Con-
structive) (φ ∨ ¬φ, does not hold here)

Definition A valuation v (a model) is a function from the atoms to the set
of truth values. I.e.: v : {p,q,r,...,p1, p2, ...} → {T, F}. v can be extended to
all formulas by the truth tables using recursion. Note that v(φ) is the same as
[|φ|]v.

Definition φ1,...,φn |= ψ tells us that for all valuations v, we have that
iff\end{figure}

\begin{figure} [|φ1|]v,...,[|φn|]v = T then [|ψ|]v = T.

Definition Sondness says that: If φ1,...,φn` ψ then φ1, ..., φn |= ψ.

Definition Completeness (the other way around) says that: If φ1,...,φn |= ψ
then φ1, ..., φn ` ψ.

Definition If: |= ψ then we say that ψ is a tautology, or logical truth.

Note: φ1, ..., φn |= ψ iff |= (φ1, ..., φn) → ψ

1.1 Fφ

Each formula φ containing the atoms p1,...,pn gives a function Fφ.

Fφ : {T, F}n → {T, F}

1

where {T, F}n = {(A1, ...,An) | Ai ∈ {T, F}, 1 ≤ i ≤ n}

defined by Fφ(A1, ...,An) = [|φ|]v

where v(p1)=A1, v(p2)=A2, ...,v(pn) = An

There are 2(2
n)functions in {T, F}n → {T, F}. Can each function in {T, F}n

→ {T, F} be expressed by a formula? Yes!

1.1.1 Proof by Example

Given an arbitrary function Fun, we want to express Fun using our standard
connectives.

p1 p2 p3 Fun Matching expr:
T T T F ¬p1∨¬p2∨¬p3
T T F T
T F T T
T F F F ¬p1∨p2∨p3
F T T T
F T F F p1∨¬p2∨p3
F F T T
F F F T

Fun is expressed by the conjunctions of the three expr above (conjuctive normal
form):

(¬p1∨¬p2∨¬p3)∧(¬p1∨p2∨p3)∧(p1∨¬p2∨p3).

1.2 Connectives
Each formula of propositional logic is equivalent to a formula which only con-
tains the connectives: ∧, ∨ , ¬. {∧,∨,¬} is called the complete set of connectives.

φ ∧ ψ ≡¬(¬φ ∨ ¬ψ), hence {∨,¬} is complete
φ ∨ ψ ≡¬(¬φ ∧ ¬ψ), hence {∧,¬} is complete

p q p↑q (nand) p↓q (nor) ¬p≡p↓p p ∨q ≡¬(p ↓q)≡(p ↓ q) ↓ (p ↓ q)
T T F F F T
T F T F F T
F T T F T T
F F T T T F

2

1.3 Types and Propositions
∧i and xi

φ ψ
∧i

φ ∧ ψ

a ∈ A b ∈ B
xi

< a, b >∈ AxB

∧e and xe

φ ∧ ψ ∧e1
φ

φ ∧ ψ ∧e2
ψ

c ∈ AxB xe1
fst(c) ∈ A

c ∈ AxB xe2
snd(c) ∈ B{

fst(<a,b>)=a

snd(<a,b>)=b

∨i and +i

φ ∨i1
φ ∨ ψ

ψ ∨i2
φ ∨ ψ

a ∈ A
+i1

inl(a) ∈ A+B
b ∈ B

+i2
inr(x) ∈ A+B

∨e and +-elimination

φ ∨ ψ

[φ]
...
χ

[ψ]
...
χ
∨eχ

C ∈ A+B

[x ∈ A]
...

d(x) ∈ C

[y ∈ B]
...

e(y) ∈ C
+e

when(c, d, e) ∈ C{
when (inl(a),d,e)=d(a)

when (inr(b),d,e)=e(b)

3

→i

[φ]
...
ψ

→ i
φ→ ψ

[x ∈ A]
...

b(x) ∈ B
→ i

λx b(x) ∈ A→ B

→e

φ φ→ ψ → e
ψ

a ∈ A f ∈ A→ B → e
apply(f, a) ∈ B

apply(λx b(x), a) = b(a)

4

DAT060
LV 1, Lecture 3
Assignment 1

Problem 1

(1) If the sun shines, Emmy and Kurt eat ice cream.
p: the sun shines
q: emmy eats ice cream
r: kurt eats ice cream

p → q ∧ r

Alternative Solutions:
p: the sun shines
q: E and K eat ice cream

p → q
—
p: if the sun shines, E and K eat ice cream.

p

(2) Exactly one out of Ada, Haskell, and Bertrand doesn’t
like cats.
p: ada likes cats
q: haskell likes cats
r: bertrand likes cats

(¬p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r)∨ (p ∧ q ∧ ¬r)

Alternative Solutions:
p: Ada does not like cats.
q: Haskell does not like cats.

1

r: Berthrand does not like cats.

(p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r)

Problem 2

1) p ∧ (q ∧ r) ` (p ∧ q) ∧ r

1 p ∧ (q ∧ r) premise

2 p ∧e1 1

3 q ∧ r ∧e2 1

4 q ∧e1 3

5 r ∧e2 3

6 p ∧ q ∧i 2, 4

7 (p ∧ q) ∧ r ∧i 6, 5

2) (p → r) ∨ (q → r) ` p ∧ q → r

1 (p→ r) ∨ (q → r) premise

2 p ∧ q assumption

3 p ∧e1 2

4 q ∧e2 2

5 p→ r assumption

6 r →e 3, 5

7 q → r assumption

8 r →e 4, 7

9 r ∨e 1, 5–6, 7–8

10 p ∧ q → r →i 2–9

2

3) p →¬p, ¬p → p ` ⊥

1 p→ ¬p premise

2 ¬p→ p premise

3 p assumption

4 ¬p →e 1, 3

5 ⊥ ¬e 3, 4

6 ¬p ¬i 3–5

7 ¬p assumption

8 p →e 2, 6

9 ⊥ ¬e 6, 7

10 ¬¬p ¬i 7–9

11 ⊥ ¬e 10, 6

Apparently you can solve this with a flashy lemma-macro. I did not get that
down.

4) ¬(p ∧ q) ` ¬p ∨ ¬q

1 (p ∧ q)→ ⊥ premise

2 p ∨ ¬p LEM

3 p assumption

4 q ∨ ¬q LEM

5 q assumption

6 p ∧ q ∧i 3, 5

7 ⊥ ¬e 6, 1

8 ¬p ∨ ¬q ⊥e

9 ¬q assumption

10 ¬p ∨ ¬q ∨i1 9

11 ¬p ∨ ¬q ∨e 4, 5–8, 9–10

12 ¬p assumption

13 ¬p ∨ ¬q ∨i1 12

14 ¬p ∨ ¬q ∨e 2, 3–11, 12–13

3

Alternative Solution:

1 ¬(p ∧ q) premise

2 ¬(¬p ∨ ¬q) assumption

3 ¬p assumption

4 ¬p ∨ ¬q ∨i1 3

5 ⊥ ¬e 4, 2

6 p PBC 3–5

7 ¬q assumption

8 ¬p ∨ ¬q ∨i2 8

9 ⊥ ¬e 8, 2

10 q PBC 7–9

11 p ∧ q ∧i 6,10

12 ⊥ ¬e 11, 1

13 ¬p ∨ ¬q PBC 2–12

Problem 3 (p → q) → p ` p

1 (p→ q)→ p premise

2 p ∨ ¬p LEM

3 p assumption

4 ¬p assumption

5 p assumption

6 ⊥ ¬e 4, 5

7 q ⊥e 6

8 p→ q →i 5–7

9 p →e 8, 1

10 p ∨e 2, 3–3, 4–9

4

Alternative Solution:

1 (p→ q)→ p premise

2 ¬p assumption

3 p assumption

4 ⊥ ¬e 3, 2

5 q ⊥e 4

6 p→ q →i 3–5

7 p →e 6, 1

8 ⊥ ¬e 7, 2

9 p PBC 2–8

Assume Pierce’s law instead of LEM.

` p ∨ ¬p
Assume ¬(p ∨ ¬p) ` ¬p, then we must show that ⊥ is implied by p. However,
if we have p then p ∨ ¬p. This in turn implies ⊥.

5

Next assignment
Exercise 1.4.2 d) (p 82)

Give the truth table for: p∧q→p∨q

p q p∧q p∨q p∧q → p∨q
T T T T T
T F F T T
F T F T T
F F F F T

Conjunctive Normal Form: p ∨ ¬p

Exercise 1.4.2 c)

Give the truth table for: p ∨ (¬(q ∧ (r → q)))

p q r r → q q ∧ (r → q) ¬(q ∧ (r → q)) p ∨ (¬(q ∧(r → q)))
T T T T T F T
T T F T T F T
T F T F F T T
T F F T F T T
F T T T T F F
F T F T T F F
F F T F F T T
F F F T F T T

p q r p ∨ (¬(q ∧ (r → q)))
F T T F
F T F F

¬p∧q∧r
¬p∧q∧¬r
—
¬((¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r)) <=> (p ∨¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ r)

6

Exercise 1.4.12 a) (p 86)

Show that: ¬p ∨ (q → p) ` ¬p ∧ q, is not valid.

We use the soundness theorem: φ ` ψ => φ |= ψ. (φ |= ψ <=> ∀ valua-
tions, val(φ)=T => val(ψ)=T)

We strive towards finding a valuation s.t. val(φ)=T and val(ψ)=F

Attempt q=F: ¬p ∨ (F → p) ` ¬p ∧ F

F → p is true for all p, that means that LHS true and RHS, we disproved
the expression!

This also works if p=T.

Exercise 1.4.12 b)

¬r → (p ∨ q), r ∧ ¬q `r → q

RHS = F iff r = T, q = F

LHS = F → (p ∨ F), T ∧ T, it checks out for all values of p. We proved
that the secuent is invalid.

Exercise 1.5.3 (p 87)

¬p ≡p → ⊥

Show that: {→, ⊥} is adeqvate (with those two you can derive all other con-
nectives).

φ ∧ ψ ≡¬¬(φ ∧ ψ) ≡
¬(φ ∧ ψ → ⊥) ≡
¬(φ → ψ → ⊥) ≡
(φ → ψ → ⊥) → ⊥

7

DAT060
2016-09-13

LV 3, Lecture 1

1 Propositional Logic
So far we have talked about:

• Atoms: p, q, r, ...

• Connectives: ∧, ∨, ¬, ...

• Proof system

– Natural deduction

• Semantics

– Classical semantics in terms of truth values.

– Constructive semantics in terms of proofs.

• Identification of proposition and types:

– φ∧ψ A x B

– φ∨ψ A + B

– φ→ψ A → B

– ⊥ ∅

2 Predicate Logic (Syllogism)
All dog have four legs.
Caro is a dogs.
Caro has four legs.

Predicate logic is about (propositional logic) + (quantifiers: ∃, ∀).

D(x): x is a dog.
F(x): x has four legs.

1

https://en.wikipedia.org/wiki/Syllogism

c: Caro

∀x(D(x) → F(x))
D(c)
F(c)

2.1 The Dog Language
D and F are unary predicates (take one argument). C is an individual constant.

We extend this by: m(x), a unary function symbol which we interpret as “the
mother of x”, as well as O(x,y), a binary function which we interpret as “x is
older than y”.

∀x(D(x) → O(m(x), x)))

2.2 Arithmetic
= (equality) binary predicate
+ (addition) binary function symbol
* (multiplication) binary function symbol
succ (successor) unary function symbol
0 (zero) individual constant

2.2.1 Examples

∀x∀y(x+y = y+x)

2.3 The Language of Set Theory
Contains only two predicates (= and ∈) both binary. There are no individual
constants, nor any function symbols.

∃x∀y(¬(y∈x)) expresses the empty set.
∀x∀y(x = y ↔ ∀z(z ∈ x↔ z ∈ y)) expresses the extensionality axiom.

0 = ∅
1= {∅}
2={∅,{∅}}
n={0,...,n-1}

2.4 Predicate Logic as a Formal Language (p. 99)
A vocabulary (P, F, C) consists of:

• P: set of predicate symbols.

2

https://en.wikipedia.org/wiki/Axiom_of_extensionality

• F: set of function symbols.

• C: set of constant symbols.

2.4.1 Vocabularies

The dog language has the vocabulary ({D, F, O}, {m}, {c}).
The arithmetic language has vocabulary ({=}, {succ, +, *}, {0})
Set theory has the vocabulary ({∈, =}, ∅, ∅)

2.4.2 Terms (p. 99)

The set of terms for a vocabulary is inductively defined by:

i) Any variable is a term.

ii) Any individual constant is a term.

iii) If t1, ..., tn are terms and f ∈ F with arity n > 0, then f(t1, ..., tn)
is a term.

Examples of Terms

Dog Language
x
c
m(c)
m(m(c))

Arithmetic
0
x
succ(x)

Set Theory
x, y, z, ... (no other terms)

2.4.3 Formulas (p. 100)

i) If P is an n-ary predicate symbol and t1, ..., tn are terms, then P(t1,
..., tn) is an atomic formula.

ii) The set of formulas is inductively defined by:

• If φ is a formula, then ¬φ is a formula.
• If φ and ψ are formulas, then φ ∧ ψ, φ ∨ ψ, and φ → ψ are

formulas.
• If φ is a formula and x is a variable, then ∀xφ and ∃xφ are

formulas.

3

2.4.4 Bound ond Free Variables

∀x(P (x)→ ∃zQ(x, y, z))→ Q(x, y, z)

P(x) is bound, because of the quantifier ∀x (which in itself is bound). The
x and z in Q(x,y,z) is also bound (also because of ∀x and ∃z). y, however, is
free! In the second Q(x,y,z) all variables are free (no quantifier).

Substition is notated as: φ[t/x] denotes the result of substituting t for all free
occurances of x in φ. Note: No free variable in t must become bound in φ[t/x]!

4

DAT060
2016-09-16

LV 3, Lecture 2

1 Free/Bound variables and substitutions
Given a formula φ := ∃x(¬(x = y)) and the substitutional operator φ[x/y]:=∃x(¬(x =
x)) we are given that we have something that is not equal to itselsf. This is not
allowed, since x is not free for y, in φ.

2 Rules for Natural Deduction
All the rules for propositional logic still holds, but we add some additional rules
for the quantifiers: ∀ and ∃.

2.1 ∀-elimination
∀x φ

∀e
φ[t/x]

With the restriction that t must be free for x in φ.

Example (Dog language):
∀x(D(x) → L(x), D(c) ` L(c))

1 ∀x(D(x) → L(x)) premise

2 D(c) premise

3 D(c) → L(c) ∀e 1

4 L(c) → e 2, 3

1

2.2 ∀-introduction
Introduce the “completely arbitrary” variable x0.

[x0]
...

φ[x0/x] ∀i∀x φ

x0 is a fresh variable, i.e. it occurs not outside the box, nor in φ. (Imagine a
box around the nominator and the x0.)

Example: Show that ∀xP (x) ` ∀x (P (x) ∨Q(x))

1 ∀x P (x) premise

2 x0 P (x0) ∀e 1

3 P (x0) ∨Q(x0) ∨i1 2

4 ∀x (P (x) ∨Q(x)) ∀i 2–3

Example: Show that ` ∀x (P (x) ∧Q(x) → P (x))

1 x0 Fresh Variable

2 P (x)Q(x) assumption

3 P (x0) ∧e1 2

4 P (x0) ∧Q(x0) → P (x0) → i 2–3

5 ∀x (P (x0) ∧Q(x0) → P (x0)) ∀i 1–4

2.3 Equality

= i
t = t

t1 = t2 φ[t1/x]
= e

φ[t2/x]

Example: Commutativity (t1 = t2 ` t2 = t1)

Put φ := (x = t1) and use =-elimination.
Then φ[t1/x] := t1 = t1
φ[t2/x] := t2 = t1

t1 = t2
= i

t1 = t1 = e
t2 = t1

2

2.4 ∃-Introduction
φ[t/x]

∃i∃x φ

Example: P(c) ` ∃xP (x)

1 P (c) premise

2 ∃x P (x) ∃i 1

Example: ∀xφ ` ∃xφ

1 ∀x φ premise

2 φ[x/x] ∀e 1

3 ∃x φ ∃i 2

2.5 ∃-Elimination

∃x φ

[x0 φ[x0/x]]
...
χ

∃eχ

Example: ∀x (P (x) → Q(x)), ∃xP (x) ` ∃xQ(x)

1 ∀x (P (x) → Q(x)) premise

2 ∃x P (x) premise

3 x0 P (x0) assumption

4 P (x0) → Q(x0) ∀e 1

5 Q(x0) → e 3,4

6 ∃x Q(x) ∃i 5

7 ∃x Q(x) ∃e 2, 3–6

Example: ∀x (¬P (x)) ` ¬∃xP (x)

3

1 ∀x (¬P (x)) premise

2 ∃x P (x) assumption

3 x0 P (x0) assumption

4 ¬P (x0) ∀e 1

5 ⊥ ¬e 3, 4

6 ⊥ ∃e 2, 3–5

7 ¬∃x P (x) → i 2–6

Theorem 2.13:
` ∃xφ ↔ ¬(∀x¬φ)
` ∀xφ ↔ ¬(∃x¬φ)
Note: Both proofs uses PBC.

4

DAT060
LV 3, Lecture 3
Assignment 2

1 Next Assignment

1.1 Syllogism
No human is immortal.
Socrates is human.
Socrates is not immortal.

A sentence is built up by:
Fix signature

∑
(symbols that we can use in our formula):

- function symbols - s
- predicate symbols - h, i
- for each symbol its arity (s: 0-arity, h: 1-arity, i: 1-arity)

No x φ[x] ∀x¬φ

∀x h(x) → ¬i(x)
h(s)
¬i(s)

1 ∀x h(x)→ ¬i(x) premise

2 h(s) premise

3 h(s)→ ¬i(s) ∀e 1

4 ¬i(s) →e 2, 3

1

1.2 ¬∀xφ ` ∃x¬φ

1 ¬∀x φ premise

2 ¬∃x ¬φ assumption

3 ∀x ¬¬φ (*2) 2

4 ∀x φ (*3) 3

5 ⊥ →e 4, 1

6 ∃x ¬φ PBC

(*1):¬∀xφ ` ∃x¬φ
(*2): ¬∃xψ ` ∀x¬ψ
(*3): φ↔ ψ, ∀xφ ` ∀xψ
(*4): ∀xφ ` ∃xφ
(*5): ∀xφ ` ∀y φ[y/x]
(*6): χ[y/y] = χ
(*7): χ[y/x][z/y] = χ[z/x]

Proof of (*2):

1 ∀x φ↔ ψ premise

2 ∀x φ premise [∀x ψ]

3 x0 φ[x0/x] ∀e 2

4 φ[x0/x]↔ ψ[x0/x] ∀e 1

5 φ[x0/x]→ ψ[x0/x] ∧e1 4

6 ψ[x0/x] →e 3, 5

7 ∀x ψ ∀i 3, 6

Proof of (*4):

1 ∀x φ premise

2 φ[x0/x] ∀e 1 [for x0]

3 ∃x φ ∃i 2

Proof of (*5):

1 ∀x ψ premise

2 y ψ[y/x] ∀e 1 [for y]

3 ∀y ψ[y/x] ∀i 2–2 [on the unknown y]

2

1.3 Extra
∀xP (x) ` ∀xP (g(x))

Predicate: P
Function symbol: g

1 ∀x P (x) premise

2 x0

3 P (g(x0)) ∀e 1, [g(x0)/x)]

4 ∀x P (g(x)) ∀i 2–3

3

2 Previous Assignment

2.1 Problem 1
a) p ∧ ¬(p → ¬q)

p q ¬q p →¬q ¬(p →¬q) p ∧ ¬(p → ¬q)
T T F F T T
T F T T F F
F T F T F F
F F T T F F

CNF is given by:
(¬p ∨ q) ∧ (p ∨ ¬q) ∧ (p ∨ q)

b) ¬r → p ∨ (q → r ∧ ¬p)
p q r r ∧ ¬p q → r ∧ ¬p p ∨ (q → r ∧ ¬p) ¬r ¬r → p ∨ (q → r ∧ p)
T T T F F T F T
T T F F F T T T
T F T F T T F T
T F F F T T T T
F T T T T T F T
F T F F F F T F
F F T T T T F T
F F F F T T T T

CNF is given by:
(p ∨ ¬q ∨ r)

2.2 Problem 2
The CNF for the table is:
(¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬r) ∧
(p ∨ q ∨ ¬r) ∧ (p ∨ q ∨ r)

2.3 Problem 3
a) p → q ` p ∨ q

if p=q=F, the LHS evaluate to T while the RHS evaluate to F.

b) p → q ∨ r ` (p → q) ∧ (p → r)

The RHS evaluates to False if p=T and q (inclusive) or r = F. The LHS evalu-
ates to True for all values of p, q, r except: p=T, q=r=F.

Hence:

4

• p=T, q=T, r=F

• p=T, q=F, r=T

both prooves that the sequent is invalid.

c) `(p ∧ q) ∨ (p → q)

The RHS evaluates to False iff p=T and q=F.

2.4 Problem 4
The truth table looks like:

φ ψ φ � ψ

T T F
T F T
F T T
F F T

a)
The operand � has the same behaviour as the operation nand (not and, ↑).
Using only our well known connectives, φ � ψ ≡ ¬(φ ∧ ψ).

b)
In class we said that {∨, ∧, ¬} is a complete set of connectives. (We also said
that {∧/∨, ¬} is a complete set, but I’ll show the former anyway.)

p q p∧q (p � q) � (p � q) p ∨ q (p � p) � (q � q) ¬p p � p p → q p � (q � q)
T T T T T T F F T T
T F F F T T F F F F
F T F F T T T T T T
F F F F F F T T T T

5

DAT060
LV 4, Lecture1

1 Models (Interpretations)
A mode for propositional logic is a valuation assigning a truth value to each
atom. A model corresponds to a row in a truth table for a particular formula.

A formula is true in the model if its truth value is T.

(Def 2.14 p. 124)
A model M of a vocabulary {P, F, C} of predicate logic consists of:

1. A non empty set A, the universe of concrete values;

2. for each constant C, an element CM in A

3. for each f ∈ F with arity n > 0, a function fM : An → A

4. for each p ∈P with arity n ≥ 0, a subset pM ⊆ An of n-tuples over A.

Example: A model of the dog language

Vocabulary:

P = {D, L, H} with arities 1, 1, 2.
F = {m} with arity 1
C = {c}

The intended interpretation M:

1. A is the set of all mammals.

2. cM= Caro

3. mM is the function which to each mammal gives its mother.

4. Predicates:

• DM= {x ∈ A | x is a dog}
• LM = {x ∈ A | x has four legs}
• HM= {(x,y) ∈ A2 | x is heavier than y}

1

Usage:
is ∀x (D(x)→ L(x)) true in M?
No, there are many amputated dog legs out there.

is ∃y∀x(D(x)→ H(y, x)) true in M?
Choose y to be an elephant, then the formula is true in M.

Example 2: Another model M’ of the dog language

1. A = {0, 1}

2. cM
′
= 0

3. mM ′
is the function defined by

{
mM ′

(0) = 0

mM ′
(1) = 0

4. Predicates:

• DM ′
= {0}

• LM ’̈’ = {1}

• HM ′
= ∅

Usage:
is ∀x (D(x)→ L(x)) true in M’?
No, let x=0, then D(x) is true but L(x) is false.

is ∃y∀x(D(x)→ H(y, x)) true in M’?
Nothing can satisfy HM ′

in M’ since HM ′
is the empty set. Therefore the ex-

pression is false for all objects in A, since DM ′
is true for 0.

Example 3: Arithmetic

Vocabulary

P = {=}

F = {+, *, succ}

C = {0}

Let N be the standard model of arithmetic:

1. A = N = {0, 1, 2, ...}

2. 0N = 0

3. +N is addition, *N is multiplication, succN is the successor

4. =N is the equality between natural numbers

2

Usage:
∀x(∃y (x = 2 ∗ y)∨∃y (x = 2 ∗ y+1)), where 1 = succ(0) and 2 = succ(succ(0))
This is true. Every number in N is either even or odd.

Example 4: A non intended model M for the vocabulary of arithmetic.

1. A is the set of mammals

2. 0M is Caro

3. +M (u, v) = *M (u, v) = succM (u)= Caro for all u, v ∈ A

4. =M is interpreted as equality between mammals

Note: φ1, ..., φn |= ψ means that for all models in which φ1, ..., φn is true, ψ
is true. φ1, ..., φn |= ψ iff φ1, ..., φn ` ψ. So, φ1, ..., φn ` ψ ⇒ φ1, ..., φn |= ψ.
The reversed is also true: φ1, ..., φn |= ψ ⇒ φ1, ..., φn ` ψ.

Is there a set of formulas Ax s.t: Ax ` φ iff φ is true in the standard model N
of arithmetic?
No! That is what Gödel’s incompleteness theorem shows.

2 Tarski’s Definition of Truth for Formalized Lan-
guages

2.1 Def 2.17 p. 127
An environment for a univrse A is a function l: var → A from the set var of
variables to A. l[x → a] is the environment which maps x to a and any other
variable y to l(y).

2.2 Def 2.18 p.128
Let a vocabulary (P, F, C) be given and a model M for the vocabulary. We want
to define what it means for a formula φ to be true in M given an environment
l. We write this as M |=l φ or [|φ|]Ml .

Let t be a term. We define [|t|]Ml by induction on t.

1. t is a variable x, and [|x|]Ml = l(x)

2. t is some cC and [|c|]Ml = cM

3. If f ∈ F of arity n and t1, ..., tn are terms then: [|f(t1, ..., tn)|]Ml =
fM ([|t1|]Ml , ..., [|tn|]Ml) so for each term t [|t|]Ml ∈ A.

3

DAT060
LV 4, Lecture 2

1 Tarski’s Truth Definition
See previous lecture, def 2.8 for the whole definition.

We will define M |=l φ, meaning that φ is true in M given the environment
l.

1. φ is P(t1, ..., tn) (the atomic case)
M |=l P(t1, ..., tn) holds if ([|t1|]ml , ..., [|tn|]ml) ∈ PM

2. Propositional symbols:
M |=l φ1 ∧ φ2 holds if M |=l φ1 and M |=l φ2 holds
M |=l ¬φ1 holds if M |=l φ1 does not hold
.
.
.

3. The universal quantifier:
M |=l ∀xφ holds if for all a ∈ ∀, M |=l[x→a] φ holds

4. The existential quantifier:
M |=l ∃xφ holds if there exist an a ∈ A s.t. M |=l[x→a] φ holds

1.1 Example
The sentence “It is raining.” is true iff it is raining.

To each formula φ you can associate a unique natural number pφq, the Gödel
number of the formula.

Tarski’s undefineability theorem of truth says that there is no formula T s.t.
N|=T(pφq) ⇔ N |= φ (N is the standard model of arithmetic).

1

2 Def 2.20
Let Γ be a set of sentences (closed formulas w/o free variables). Γ |= φ holds if,
for all models, if all formulas in Γ are true in the model, then φ is true. (φ is
also a sentence)

3 Theorem
If Γ is consistent (Γ 0 ⊥) then Γ has a model.

4 Gödel’s Incompleteness Theorem
An axiom system is a set of formulas (Ax) s.t. it is decidable if a formula is in
Ax or not. “You recognize an axiom when you see it.” Let N be the standard
model of arithmetic. Gödel then states that there is no axiom system such that:

N |= φ⇔ Ax ` φ

4.1 Idea of Proof
There is a formula GAx, in arithmetic, which intuitively says: “This formula can-
not be proved from Ax.” From this, one can prove: Ax 0 GAx and Ax 0 ¬GAx.

Note that N |= GAx holds!

5 Show that ∃x (P (x) → Q(x)) 0 ∀x (P (x) → Q(x))

Soundness tells us that: Γ ` φ ⇒ Γ |= φ. To show that Γ 0 φ we will give a
model M such that M |= ψ for all ψ ∈ Γ and M 2 ψ.

A = {0, 1} (the domain)
PM = {0}
QM = {∅}

M |= ∃x (P (x) → Q(x)) ⇔ There exists a ∈ A s.t. M |=l[x→a]P(x) → Q(x). ⇔
There exists a ∈ A s.t. (M |=l[x→a] P(x) ⇒ M |=l[x→a] Q(x)).

Choose a to be 1.

M |= ∀x (P (x) → Q(x)) ⇔ For all a ∈ A, M |=l[x→a] P (x) → Q(x)

Choose a to be 0, then M |=l[x→a] P (x) holds, but M |=l[x→a] Q(x) does not. Q
is always false, due to being the empty set. So M 2∀x (P (x) → Q(x)).

2

DAT060
LV 4, Lecture 3
Assignment 3

1 a = b, P(a,a) ` P(a,b)

1 a = b premise

2 P (a, a) premise

3 P (a, b) =e, t=a, u=b, φ = P (a, x)

2 ∀x f(g(x)) = x ` ∀x∀y g(x) = g(y)→ x = y

1 ∀x f(g(x)) = x premise

2 x0

3 y0

4 g(x0) = g(y0) assumption

5 f(g(x0)) = f(g(x0)) =i f(g(x0))

6 f(g(x0)) = f(g(y0)) =e 4, 5 (t = g(x0), u = g(y0), φ = f(g(x0)) = f(x)

7 f(g(x0)) = x0 ∀e 1 (x0)

8 f(g(y0)) = y0 ∀e 1 (y0)

9 x0 = f(g(y0)) =e 7, 6 (t = f(g(x0)), u = x0, φ = x = f(g(y0)))

10 x0 = y0 =e 8, 9 (t = f(g(y0)), u = y0, φ = (x0 = x))

11 g(x0) = g(y0)→ x0 = y0 →i 4–10

12 ∀y g(x0) = g(y)→ x0 = y ∀i 3–11

13 ∀x∀y g(x) = g(y)→ x = y ∀i 2–12

Beware of the direction in the elimination rule. If you have t=u and φ[t/x]
you end up with φ[u/x].

1

3 Problem 2.4.3
Given that: P is a binary predicate, M has carrier A, PM ⊆ AxA
Note: ¬P (x, x) ≡ P (x, x)→ ⊥

i) M |=l ∀x¬P (x, x)
iff for all a ∈ A, M |=

l[x→a]

¬P (x, x)

iff for all a ∈ A, M |=
l[x→a]

P (x, x) ⇒ (M |=
l[x→a]

⊥)

iff for all a ∈ A, (a,a) ∈ PM ⇒ False
iff for all a ∈ A, (a,a) /∈ PM�

PM = ∅ and (a,a) /∈ ∅

ii) N2l ∀x¬P (x, x) N has carrier B, PN ⊆ BxB
(N|=l ∀x¬P (x, x)) ⇒F
(forall a ∈ B, (a,a) /∈ PN)

Let B = {0}, PN = {(0, 0)}

(0,0) ∈ PN contradicts (forall a ∈ B, (a,a) /∈ PN) hence we have provet what
we wanted.

4 Problem 11 a)
Γ:={∀x¬S(x, x), ∃(x)P (x), ∀x∃y S(x, y), ∀x (P (x)→ ∃y S(y, x))}
Show that Γ is consistent, i.e. show M for all φ ∈ Γ, M|= φ.

A = {0, 1}
PM = {0}
SM = {(0, 1), (1, 0)}

i) M|= ∀x¬S(x, x) can be shown by: Let a ∈ A, (a,a)/∈ SM ⇒ ⊥. This has
two cases:

1. a = 0, (0,0) /∈ SM

2. a = 1, (1,1) /∈ SM

ii) M |= ∃xP (x)
iff exists a ∈ A, a ∈ PM

Let a = 0, then 0 ∈ PM

iii) M|= ∀x∃y S(x, y)
forall a ∈ A, exists b ∈ A, (a,b) ∈ SM

2

1. a = 0, let b = 1, (0,1) ∈ SM

2. a = 1, let b = 0, (1,0) ∈ SM

3

Assignment 3
Problem 2
a) ∀x∀y R(x, y) ` ∀xR(x, x)

1 ∀x∀y R(x, y) premise

2 x0

3 ∀y R(x0, y) ∀e(1, x0)

4 R(x0, x0) ∀e(3, x0)

5 ∀x R(x, x) ∀i 2–4

b) ∀x (P (x)→ S) ` (∃xP (x))→ S

1 ∀x(P (x)→ S) premise

2 ∃x P (x) assumption

3 x0

4 P (x0) assumption

5 P (x0)→ S ∀e(1, x0)

6 S →e 4, 5

7 S ∃e 2, 3–6

8 ∃x (P (x))→ S → i 2–7

c) ∃x∀y R(x, y) ` ∀y∃xR(x, y)

1 ∃x∀y R(x, y) premise

2 y0

3 x0

4 ∀y R(x0, y) assumption

5 R(x0, y0) ∀e(4, y0)

6 ∃x R(x, y0) ∃i(5, x0)

7 ∃x R(x, y0) ∃e 1, 3–6

8 ∀y∃x R(x, y) ∀i 2–7

4

d) ∃x (P (x) ∨Q(x)), ∀x (Q(x)→ F (x)) ` ∃x (P (x) ∨ F (x))

1 ∃x (P (x) ∨Q(x)) premise

2 ∀x (Q(x)→ F (x)) premise

3 x0

4 P (x0) ∨Q(x0) assumption

5 Q(x0)→ F (x0) ∀e 2

6 Q(x0) assumption

7 F (x0) →e 5, 6

8 P (x0) ∨ F (x0) ∨i2 7

9 P (x0) assumption

10 P (x0) ∨ F (x0) ∨i1 9

11 P (x0) ∨ F (x0) ∨e 4, 6–8, 9–10

12 ∃x (P (x) ∨ F (x)) ∃i 11

13 ∃x (P (x) ∨ F (x)) ∃e 1, 3–12

5

Problem 3
∃x (P (x)→ ∀y P (y))

Solution 1
(1):∀y P (y) ` ∀x (P (x)→ ∀y P (y)) ` ∃x (P (x)→ ∀y P (y))
(2):¬∀y P (y) ` ∃y ¬P (y) ` ∃y (P (y)→ ∀y P (y))

1 ∀y P (y) ∨ ¬∀y P (y) LEM

2 ∀y P (y) assumption

3 ∃x (P (x)→ ∀yP (y)) (1)

4 ¬∀y P (y) assumption

5 ∃x (P (x)→ ∀y P (y)) (2)

6 ∃x (P (x)→ ∀y P (y)) ∨e (1, 2–3, 4–5)
\;

1 ∀y P (y) premise

2 P (x0) assumption

3 ∀y P (y) copy(1)

4 P (x0)→ ∀y P (y) →i (2–3)

5 ∃x (P (x)→ ∀y P (y)) ∃(4, x0)

1 ¬∀y P (y) premise

2 ∃y ¬P (y) lemma from last time

3 ¬P (y0) assumption

4 P (y0) assumption

5 ⊥ ¬e

6 ∀y P (y) ⊥e

7 P (y0)→ ∀y P (y) →i 4–6

8 ∃x (P (x)→ ∀y P (y)) ∃i(7, x0)

9 ∃ (P (x)→ ∀y P (y)) ∃e(3−−8, y0)

6

Solution 2 (What happened here?)

1 ∀y P (y) ∨ ¬∀y P (y) LEM

2 ∀y P (y) ∨ ∃y ¬P (y)

3 ∃y∀y P (y) ∨ ¬P (y) weird lemma

4 ∃y P (y)→ ∀xP (x) also weird lemma

Solution 3

1 ¬∃x (P (x)→ ∀y P (y)) assumption

2 x0 P (x0) assumption

3 y0

4 ¬P (y0) assumption

5 P (y0) assumption

6 ⊥ ¬e 4, 5

7 ∀y P (y) ⊥ i 6

8 P (y0)→ ∀y P (y) →i 5–7

9 ∃x (P (x)→ ∀y P (y)) ∃i 8

10 ⊥ ¬e 1, 9

11 ¬¬P (y0) ¬i 4–10

12 P (y0) ¬¬e 11

13 ∀y P (y) ∀i 3–12

14 P (x0)→ ∀y P (y) →i 2–13

15 ∃x (P (x)→ ∀y P (y)) ∃i 14

16 ⊥ ¬e 1, 15

17 ¬¬∃x (P (x)→ ∀y P (y)) ¬i 1–16

18 ∃x (P (x)→ ∀y P (y)) ¬¬e 17

7

DAT060
LV 5, Lecture 1

1 First order formula - φ

if φ has no free variables we say that φ is a sentence.
φ is valid inM ifM |= φ.

In order to define this, we needM |=lφ.
if φ has no free variables: l: var → A
if φ is a sentence this does not depend on l (M |= φ)

φ is a tautology if |= φ, it means that φ is valid in all possible models: “∀MM |=
φ” which is a very complex notion since we quantify over all possible models!
We do however also say that ` φ is easier to prove, and |= φ ⇔` φ. ⇒ is the
completness, ⇐ is the soundness.

2 First order theory - T (in a given language)
T is a set of some sentences.

M |= T means thatM |= φ for all φ in T.
T |= ψ if for all modelsM,M |=T →M ` ψ
If T = {φ1,..., φn} (finite) φ1,, φn |= ψ, φ1,..., φn ` ψ
we can derive ψ with hypotheses φ1,..., φn.

In general, T will be infinite and T ` ψ will mean that we can find φ1, ...,
φn ∈ T s.t. φ1,..., φn` ψ.

We still have T |= ψ ⇔ T ` ψ even if T is infinite!

2.1 Theory of equivalence relations
F = ∅
P = {R} (R is a relation symbol of arity 2)

A model, M, of this language is a set A and RM ⊆ A2. This model can

1

be seen as a graph!

Example
A is a set with 4 elements {a,b,c,d} with connections between: a and b, a and
c, c and d.
T has two sentences: φ1 : ∀xR(x, x) and φ2 : ∀x∀y∀z ((R(x, z) ∧ R(y, z)) →
R(x, y)).

T = {φ1, φ2}

From this we can derive: T ` φ3, φ3 : ∀x∀y(R(x, y)→ R(y, x)). I.e. φ1, φ2 ` φ3.
We would prove φ1, φ2 ` φ3 by showing: φ1, φ2 |= φ3.

Example (Transitive)
T ` φ4, φ4 : ∀x∀y∀z ((R(x, y) ∧R(y, z))→ R(x, z))

ifM |= T thenM |= φ4

Civen elements a, b, c ∈ A we see that a is connceted to b which is turn is
connected to c. We want to show that a is connected to c. We know that
M |= φ3 so we know that c is connected to b. Using φ2 we can show that a is
connected to c.

We have seen that T ` φ3 and T ` φ4, so given T’={φ1, φ3, φ4} we should
be able to show that T’ ` φ2. T and T’ satisfy: T’ ` ψ if ψ ∈ T, T ` φ if φ `
T. Hence, T ` φ ⇔T’ ` φ for any formula φ of the language. T and T’ are
different axiomatizations of the same theory.

2.2 Theory of order relations
F =∅
P = {R} (R is a relation symbol of arity 2

Preorder: φ1 :∀xR(x, x), φ4: ∀x∀y∀z ((R(x, y) ∧R(y, z))→ R(x, z))

Poset: φ5 : ∀x∀y (R(x, y) ∧R(y, x))→ x = y

N, RM(p, q) p ≤ q
Z
Q
R
All models of φ1, φ4, φ5

(N,≤), (Z,≤), (Q,≤), (R,≤)

A = N RM is p ≤ q

2

Do we have:

1. (N,≤) |= φ ⇔(Z,≤) |= φ

2. (Z,≤) |= φ ⇔(Q,≤) |= φ

3. (Q,≤) |= φ ⇔(R,≤) |= φ

For 2. we ask ourselves:
Can we express the difference between (Z,≤) and (Q,≤) in a first-order way?

(Q,≤): ∀x∀y R(x, y) ∧ x 6= y → ∃z (R(x, z) ∧ R(z, y)). This holds for Q but
not for (Z,≤). This is because if we have to rational numbers, we can always
squeeze in a number in between them. This is not true for natural or whole
numbers.

For 1. we ask:
Can we find (N,≤) |= φ and (Z,≤) 2 φ ?

ψ = ∃x∀y ¬(R(y, x) ∧ x 6= y)
0 for all n, we cannot have n ≤ 0 ∧ n 6= 0 so (N,≤) |= φ
for the model (Z,≤) |= φ for any n, n-1 ≤ n, n-1 6= n

For 3:
One can show that 3 holds since there is no way to make a difference between
the rational and the real numbers using a “first order way”.

All these models satisfy φ6 = ∀x∀y R(x, y) ∨R(y, x) (linnearity).

We now ask: φ1, φ4, φ5 |= φ6?
One can show that this is not the case, but: φ1, φ4, φ5 2 φ6 and in order to show
this one must give a model of φ1, φ4, φ5 that is not a model of φ6. A model that
does this could be a model that relate every element to itself.

A = N, (a,b)∈RM′
a=b

M′|= φ1 ∧ φ4 ∧ φ5 butM′ 2 φ6

By soundness φ1, φ4, φ5 0 φ6. There is no derivation of φ6 from φ1, φ4, φ5.

Is φ derivable from T? I.e. T ` φ ⇔ T |= φ? Is there an algorithm for solving
this question? This is called the decision problem, and there is no algorithm to
solve this.

3

2.3 Theories about arithmetic
• Theory of 0 and n+1 (complete)

• Presburger arithmetic 0, n+1, n+m (in complete)

• Peano arithmetic 0, n+1, n+m, n*m (not decidable)

2.3.1 When is T decidable?

We have an algorithm which decides. Given an input (a sentence) φ we either
get T ` φ or T 0 φ.

2.3.2 Theory of 0 and n+1

Language: zero (constant), S(x) (functional symbol of arity 1), no relations
Model: a = zeroM ∈ M, f = SM: A → A. A, a ∈ A, f: A → A,
N, 0, f: N→ N, n 7−→ n+1 is a particular model

(N, 0, S) |= φ

Can I find a theory T s.t. T ` φ ⇔ (N, 0, S) |= φ?
We have two axioms:
φ1 = ∀x zero 6= S(x)
φ2 = ∀x∀y S(x) = S(y)→ x = y
These formulas are valid in (N, 0, S)

φ1 tells us that a is not in the image of f
φ2 tells us that f: A → A is injective

T0={φ1, φ2}
Exercise:
Give a model of T0 that is not a model of δ1 = ∀xx 6= S(x), δ2 = ∀xx 6=
S(S(x)), δ3 = ∀xx 6= S(S(S(x))), We are missing ψ = ∀x (x = 0 ∨ ∃y (x =
S(y))).

We have T ` φ ⇔ (N, 0, S) |= φ.

Furthermore one can write an algorithm which decides T ` φ. We can replace
“thinking” by computations. We can do the same for addition.

4

Logic in Computer Science

For a given language F ,P, a first-order theory is a set T of sentences (closed formulae) in this given
language. The elements of T are also called axioms of T .

A model of T is a model M of the given language such that M |= ψ for all sentences ψ in T .

T ` ϕ means that we can find ψ1, . . . , ψn in T such that ψ1, . . . , ψn ` ϕ.
T |= ϕ means that M |= ϕ for all models M of T .

The generalized form of soundness is that T ` ϕ implies T |= ϕ and completness is that T |= ϕ
implies T ` ϕ.

If T is a finite set ψ1, . . . , ψn this follows from the usual statement of soundness (` δ implies |= δ)
and completness (|= δ implies ` δ). Indeed, in this case, we have T ` ϕ iff ` (ψ1 ∧ · · · ∧ ψn) → ϕ and
T |= ϕ iff |= (ψ1 ∧ · · · ∧ ψn)→ ϕ.

Theory of equivalence relations

The language is P = {E}, binary relation, and F = ∅. The axioms are

∀x. E(x, x) ∀x y z. (E(x, z) ∧ E(y, z))→ E(x, y)

We can then show T ` ∀x y.E(x, y)→ E(y, x) and T ` ∀x y z. (E(x, y) ∧ E(y, z))→ E(x, z).

Theory about orders

The theory of strict order. The language is P = {R}, binary relation, and F = ∅. The axioms are

∀x.¬R(x, x) ∀x y z. (R(x, y) ∧R(y, z))→ R(x, z)

We can add equality and get the theory Tlin of linear orders

∀x y. (x 6= y)→ (R(x, y) ∨R(y, x))

Models are given by the usual order on N,Q,R. The model of rationals (Q, <) also satisfies

ψ1 = ∀x.∃y. R(x, y) ψ2 = ∀x.∃y. R(y, x) ψ3 = ∀x y. R(x, y)→ ∃z. R(x, z) ∧R(z, y)

It can be shown that we have (Q, <) |= ϕ iff (R, <) |= ϕ iff Tlin, ψ1, ψ2, ψ3 ` ϕ and furthermore, there
is an algorithm to decide whether (Q, <) |= ϕ holds or not.

The theory of preorder has for axioms

∀x.R(x, x) ∀x y z. (R(x, y) ∧R(y, z))→ R(x, z)

and for the theory of poset is this theory together with the antisymmetry

∀x y. (R(x, y) ∧R(y, x))→ x = y

A poset is linear if it also satisfies the axiom

∀x y. R(x, y) ∨R(y, x)

(Q,6) and (R,6) are two linear posets that are not isomorphic but they satisfy the same first-order
formula. Furthermore we can decide whether (Q,6) ` ϕ holds or not.

1

Theory about arithmetic

The language is F = {zero,S} and P = ∅, but we have equality.
The first theory T0 is

∀x.zero 6= S(x) ∀x y.S(x) = S(y)→ x = y

A model of this theory is a set A with a constant a ∈ A and a function f ∈ A → A such that f is
injective and a is not in the image of f .

A particular model N is given by the set of natural numbers and 0 ∈ N and the successor function s
on N.

The formulae δ1 = ∀x.x 6= S(x), δ2 = ∀x.x 6= S(S(x)), . . . are not provable in T0 but are valid in
the model (N, 0, s). The formula ψ = ∀x.x = 0 ∨ ∃y.(x = S(y)) is not provable in T0, δ1, δ2, . . . but is
also valid in the model (N, 0, s). We can look at the possible shape of the models of T0, δ1, δ2, . . . Such a
model is a disjoint union of copies of N and Z and it there are several copies of N the formula ψ will not
be satisfied.

It can be shown that we have (N, 0, s) |= ϕ iff T0, δ1, δ2, . . . , ψ ` ϕ and furthermore, there is an
algorithm to decide (N, 0, s) |= ϕ. The models of T0, δ1, δ2, . . . , ψ consist of one copy of N and zero or
several copies of Z

Presburger arithmetic

We add the binary function symbol (+) and add to T0 the axioms

∀x. x+ zero = x ∀x y. x+ S(y) = S(x+ y)

and the induction schema

∀y1 . . . ym.ϕ(y1, . . . , ym, zero) ∧ ∀x.(ϕ(y1, . . . , ym, x)→ ϕ(y1, . . . , ym,S(x)))→ ∀z.ϕ(y1, . . . , ym, z)

The resulting theory PrA is called Presburger arithmetic. It can be shown that (N, 0, s,+) |= ϕ iff
PrA ` ϕ and there is an algorithm to decide (N, 0, s,+) |= ϕ.

Peano arithmetic

We add the binary function symbol (·) and add to PrA the axioms for multiplication

∀x. x · zero = zero ∀x y. x · S(y) = x · y + x

with the induction schema, where the formula ϕ(y1, . . . , ym, x) can also used multiplication. The resulting
theory PA is called Peano arithmetic. It has been shown by Gödel that PA is incomplete: there is a
formula ϕ such that (N, 0, s,+, ·) |= ϕ but we don’t have PA ` ϕ.

Furthermore (N, 0, s,+, ·) |= ϕ is undecidable (there is no algorithm to decide N |= ϕ) and there is no
effective way to enumerate all sentences ϕ valid in the model (N, 0, s,+, ·).

2

The decision problem

The decision problem (Hilbert-Ackermann 1928) is the problem of deciding if a sentence in a given
language is provable or not.

More generally the problem is to decide if we have ψ1, . . . , ψn ` ϕ or not.
There are special cases where this problem has a positive answer.
A general method is to apply the following remark: we have ψ1, . . . , ψn ` ϕ iff the following theory

ψ1, . . . , ψn,¬ϕ has no models. This follows from soundness and completeness.

Bernays-Schönfinkel decidable case

This is the particular case where F has only constant symbols and all formulae ψ1, . . . , ψn, ϕ are of the
form ∀y1 . . . ym.δ or ∃y1 . . . ym.δ where δ is quantifier-free.

In this case the following algorithm, that I illustrate on some examples, gives a way to decide whether
ψ1, . . . , ψn,¬ϕ has a model or not. (If it has a model, it always has a finite model.) In this way, we
decide whether ψ1, . . . , ψn ` ϕ holds or not.

We take the example

T1 = ∃x.(P (x) ∧ ¬M(x)),∃y.(M(y) ∧ ¬S(y)),∀z.(¬P (z) ∨ S(z))

The first step is to eliminate the existential quantifiers by introducing constants

T2 = P (a) ∧ ¬M(a), M(b) ∧ ¬S(b),∀z.(¬P (z) ∨ S(z))

It should be clear that T1 has a model iff T2 has a model.
The second step is to eliminate the universal quantifiers by instantiating on all constants

T3 = P (a) ∧ ¬M(a), M(b) ∧ ¬S(b), ¬P (a) ∨ S(a), ¬P (b) ∨ S(b)

In this way we find a model with two elements P (a),¬M(a), S(a),M(b),¬S(b),¬P (b).
This implies that ∃x.(P (x) ∧ ¬M(x)),∃y.(M(y) ∧ ¬S(y)) ` ∃z.(P (z) ∧ ¬S(z)) is not valid.

Other examples

∀x.¬R(x, x) ` ∀x y.(R(x, y)→ ¬R(y, x) is not valid since we find a model of

T1 = ∀x.¬R(x, x), ∃x y. R(x, y) ∧R(y, x)

by eliminating existentials
T2 = ∀x.¬R(x, x), R(a, b) ∧R(b, a)

and then universals
T3 = ¬R(a, a), ¬R(b, b), R(a, b) ∧R(b, a)

and we get a counter-model with two elements.
On the other hand ∀x y.(R(x, y)→ ¬R(y, x) ` ¬R(x, x) is valid, since if we try to find a model of

T1 = ∀x y.(R(x, y)→ ¬R(y, x)), ∃x.R(x, x)

by eliminating existentials
T2 = ∀x y.(R(x, y)→ ¬R(y, x)), R(a, a)

and then universals
T3 = R(a, a)→ ¬R(a, a), R(a, a)

we should have R(a, a) and ¬R(a, a) and we cannot find a counter-model.

3

Theory of cyclic order

(Not covered in the lecture, but a nice example of a theory and of the use of the Bernays-Schönfinkel
algorithm.)

A cyclic order is a way to arrange a set of objects in a circle (examples: seven days in a week, twelve
notes in the chromatic scale, . . .). The language is P = {S} which is a ternary predicate symbol and
the first 3 axioms are

ψ1 = ∀x y z.S(x, y, z)→ S(y, z, x) ψ2 = ∀x y z.S(x, y, z)→ ¬S(x, z, y)

ψ3 = ∀x y z t.(S(x, y, z) ∧ S(x, z, t))→ S(x, y, t)

One can then use the Bernays-Schönfinkel algorithm to show automatically that these axioms are inde-
pendent: we don’t have ψ1, ψ2 ` ψ3 or ψ2, ψ3 ` ψ1 or ψ3, ψ1 ` ψ2.

The last axiom of the theory of cyclic order uses equality

ψ4 = ∀x y z.(x 6= y ∧ y 6= z ∧ z 6= x)→ S(x, y, z) ∨ S(x, z, y)

The extension of the Bernays-Schönfinkel algorithm to equality is possible by axiomatising the equality
relation. (This was first done by Ramsey, 1928, by another method.)

4

DAT060
LV 5, Lecture 2

1 First-Order Theory (Cont.) N= {0, 1, 2, ...}
Given:

One constant: zero
One function symbol: S(x)

We can describe N using a model for this language. We have to give a meaning
to the symbols of this language. A model is made from a set (A) elements in
that set (a ∈ A) and functions (f: A → A).

1.1 Example
M1: A = N, a = 0, f: n 7→ n+1
M2: A = Q, a = 1, f: x 7→ n+1
M3: A = [0, 1], a = 1, f: x 7→x

2
M4: A =]0 ,1], a = 1, f: x 7→x

2]0, 1] = {r | 0 < r ≤ 1}

What we want is a theory T in this language s.t. T ` φ ←→ M1 |= φ. In
particular M1|= T.

Wy may ask more: M1 is the only model of T.

This is not possible as such. If M1 is 0, 1, 2, 3, 4 using S(x) as the succ
function between each number, We can always take a “copy” of M1 and call it
M’1 but instead of A = N we use A = {1, 2, 3, ...}, a = 1, f: n 7→ n+1. M1|= φ
←→ M’1 |= φ.

M”1: 1, 1
2 ,

1
4 , ... we can have A = {1, 1

2 ,
1
4 , ...}, a=1, f: x 7→x

2 .

M”1 |= φ ←→ M’1 |= φ

First-order logic can only describe a “structure” and not talk abou the “na-
ture” of elements. It is an abstract data type. We can ask instead: Any model
M |= T is a “copy” (isomorphic) of M1. Even this is not possible.

1

1.2 Example

T0:

{
∀x zero 6=S(x)

∀xy (S(x) = S(y)→ x = y)

M1 |= T0

M22 T0 because M2 2 ∀x(zero 6= S(x))
r = -1 ∈ Q, r+1 = 0

M3 |= T0

M4 |= T0

1.3 T0 is not “complete”
M1 |= ∀x(x 6= S(x))
But T0 0 ∀x(x 6= S(x)), we prove such things via soundness.

We give a model of T0 which is not a model of T0 0 ∀x(x 6= S(x)). M3 is
such a model. M3 |= T0 but M3 2 ∀x(x = S(x)). “ 02 is still zero.” M3 |=
∃x(x=S(x)), 0 ∈ [0, 1], 0

2 = 0.

In order to try to make T0 a complete theory T we must:

T =


T0

∀x(x 6= S(x)),∀x(x 6= S(S(x))), ...

∀x(x = zero ∨ ∃y(x = S(y)))

M4 2 ∀x(x = zero ∨ ∃y(x = S(y)))
zeroM4=1, 1

2 <
3
4 ≤ 1, 3

4 is in]0, 1] is not zeroM4 , but we cannot find r ∈]0, 1].
SM4(r) = 3

4 ,
r
2 = 3

4 .

1.4 Theorem: T ` φ ←→ M1 |= φ

But T has other models (not the “same” as M1)

Let M5: A = N ∪ {r ∈ R|r is irrational}= N ∪ R\Q

zeroM5 = 0, SM5

{
n ∈ N 7→n+ 1

x ∈ R\Q 7→ x
2

M5 |= T, we can describe all models of T.

2

1.5 Another way to complete T0

We do this by adding “induction”. We add: T’ = T0+ all induction sentences.
φ(zero)∧∀x(φ(x)→ φ(S(x)))→ ∀xφ(x) for all formula φ(x).

1.5.1 Example

T’ ` ∀x(x 6= S(x))
Let us write ψ(x) = x 6= S(x). T0 ` ψ(zero) = zero 6=S(zero)
T0 ` ∀x(ψ(x)→ ψ(S(x)))
T0 ` ∀x(x 6= S(x)→ S(x) 6= S(S(x)))

2 Presburger Arithmetic: PrA
We have: zero, S(x), add (arity 2)
And the following axiom: T0 + all induction sentences + ∀x(add(x, zero) = x)
+ ∀xy(add(x, S(y)) = S(add(x, y)))

A model of PrA is given by a model M where:
A = N
zeroM = 0
SM = n 7→ n+1
addM (n,m) = n+m

2.1 Completeness proof
One can show that: PrA ` φ ←→ M |= φ
Furthermore, we can write an algorithm which decides PrA ` φ.

2.2 Notes
Completeness of a theory (complete theory) for a given model M1 (T ` φ ←→
M1 |= φ). The completeness theorem states that: T ` φ ←→ For all models M,
M |= T → M |= φ.

If we have T ` φ ←→ M1 |= φ then we have: ∀φ(T ` φ or T ` ¬φ), because M1

|= φ or M1 2 ¬φ.

T0 not complete, because: T0 0 ∀x(x 6= S(x)), T0 0 ¬∀x(x 6= x = S(x)).

If a theory is called decidable it means that we can write an algorithm which
decides: T ` φ or T 0 φ.

3

3 Peano Arithmetic
PA = PrA +

mul(x,y), function symbol of arity 2
∀x(mult(x, zero)) = zero
∀xy(mult(x, S(y)) = add(mult(x, y), x))

PA ` “∀xyz (x+ 1)³ + (y + 1)³ 6= (z + 1)³”

Gödel showed that PA is not complete.

Given a model M:
A = N
zeroM = 0
SM (u) = u+1
addM (x,y) = x+y
mulM (x,y) = x*y

His incompleteness theorem showed that: PA ` φ = M |= φ and there is no
way to complete the theory PA. We cannot find in an “effective” way T ⊇ PA
which is complete. There is no algorithm which decides whether M |= φ or not.

In particular one can find φ s.t. PA 0 φ but M |= φ.

4 Decision Problem
Given a language and a sentence φ is this language, can we decide if ` φ (which
is the same as |= φ)? In other words, can we write an algorithm that given the
input φ returns yes if ` φ and no if 0 φ.

The answer is no. There is no such algorithm in general. It is however pos-
sible is some special cases!

4.1 A more general problem
Given φ1, ..., φn can we prove φ1, ..., φn ` φ?

The first idea is to use completeness/soundness. φ1, ..., φn ` φ holds iff φ1,
..., φn, ¬φ ` ⊥. Which is the same as showing that φ1, ..., φn, ¬φ has no model.

4.1.1 Special case

No function symbols.
We can have constants.
All sentences are on the form: ∀x1,...,xn φ or ∃x1, ..., xn φ, where φ is quantifier
free.

4

Example 1
Given: R(x,y), we ask if: ∀xy(R(x, y)→ ¬R(y, x)) ` ∀x¬R(x, x) holds. (The
underlined part is the quantifier free part.) We solve this in an automatic way
using the remark under 4.1.

Has ∀xy(R(x, y)→ ¬R(y, x)), ∃xR(x, x) a model?
We use ¬∀xψ(x)←→ ∃x¬ψ(x) and ¬¬ψ ←→ ψ.

1. Replace ∃x by introducing a constant.

Has ∀xy(R(x, y)→ R(y, x)), R(a, a) a model?
We get a theory with only universal formulae and finitely many constants.

2. Eliminate ∀x

Has R(a, a)→ ¬R(a, a), R(a, a) a model?
Theory without quantifiers purely a propositional problem.

In this case: R(a, a) = 1 should be true, but in the above expr we get that
R(a, a) = 0 so there is no possible model!

Example 2

∀x¬R(x, x)
?

` ∀xy(R(x, y)→ ¬R(y, x))
∀x¬R(x, x),∃xy(R(x, y) ∧R(y, x))?

1. ∀x¬R(x, x), R(a, b) ∧R(b, a)
2. ¬R(a, a), ¬R(b, b), R(a, b), R(b, a)

We found a counter-model!

A = {a,b}
R(a,b) = R(b,a) = 1 R(a,a)=R(b,b)=0

5

DAT060
LV 5, Lecture 3

Problem 1
Signature =

∑
={True, False, `, |=}

Domain = D = {algorithms A(x), formulas f}
An algorithm decides a relation: decides(A,R) := ∀i(A(i) = True←→ R(i))
T = {∀φ(` φ→|= φ), ∀φ(|= φ→` φ), ¬decidable(|=)}

We are only interested in the relation ` hence we change the relation R to
`: decides(A, `) := ∀φ(A(φ) = True←→` (φ)).
decidable(`) := ∃A decides(A, `) (note that we quantify over function symbols
A)

We want to show that: ` ¬decidable(`)

We prove a negation by assuming the negation.

1

1 decidable(`) assumption (∃A ∀φ(A(φ)) = True↔` φ)

2 ∀φ(A0(φ) = True↔` φ) assumption

3 φ

4 A0(φ0) = True↔` φ0 ∀e (2, φ0)

5 A0(φ0) = True→ φ0 ∧e1 4

6 A0(φ0) = True← φ0 ∧e2 5

7 A0(φ0) = True assumption

8 ` φ0 →e 7, 5

9 ` φ0 →|= φ0 soundness

10 |= φ0 →e 8, 9

11 A0(φ0) = True→|= φ0 →i 7–10

12 |= φ0 assumption

13 |= φ0 →` φ0 completeness

14 ` φ0 →e 12, 13

15 A0(φ0) = True →e 14, 6

16 |= φ0 → A0(φ0) = True →i 12-15

17 A0(φ0) = True↔|= φ0 ∧i 11, 16

18 ∀φ A0(φ) = True↔|= φ ∀i (3–16, φ0)

19 ∃A ∀φ(A(φ) = True↔|= φ) ∃i (18, A0)

20 decidable(|=) ∃e (1,2, 2–19, A0)

21 ¬decidable(|=) undecidability

22 ⊥ ¬e 20, 21

23 ¬decidable(`) ¬i 1–22

2

What went wrong on the submissions?
p∧q→r is parsed as (p∧q)→r and ∃xφ→ ψ is parsed as ∃x (φ)→ ψ

If you in a proof write: ¬∀y P (y) you cannot eliminate ∀y before you have
gotten rid of the negation.

If you have an implication: P(x) → S, ∃x(P (x))→S then this is wrong. You
should write ∃x(P (x)→ S)!

If you have:
1 ∃x P (x)

2 P (x0)

3 .

4 .

5 .

6 Q(x0)

7 Q(x0) ∃e 0,x0
This is wrong...

3

Last Week’s Assignment

Problem 1
a) ∀x f(f(x)) = f(x), f(b) = c ` c = f(c)

1 ∀x f(f(x)) = f(x) premise

2 f(b) = c premise

3 f(f(b)) = f(b) ∀xe 1

4 f(c) = c =e 2, 3

5 c = f(c) symmetry

symmetry: t=u ` u=t
1 t = u premise

2 t = t =i

3 φ[u/x] =e 1, 2 (φ[u/x] = (u = t))

b) ∀x∀y (x = g(y)→ f(x) = y) ` ∀x f(g(x)) = x

1 ∀x∀y (x = g(y)→ f(x) = y) premise

2 x0

3 ∀y (g(x0) = g(y)→ f(g(x0)) = y) ∀xe 1 g(x0)

4 g(x0) = g(x0)→ f(g(x0)) = x0 ∀ye 3 x0

5 g(x0) = g(x0) =i g(x0)

6 f(g(x0)) = x0 →e 4, 5

7 ∀x f(g(x)) = x ∀xi 2–6

Problem 2
φ = ∀x∃y∃z (P (x, y) ∧ P (y, z) ∧ (∀w (P (w, x)→ P (w, z))))
a)M0: A = N with PM0 := {(m,n)|m < n and m,n ∈ N}

M0 |= φ⇔ For all n ∈ N, exists a, b ∈ N, n < a ∧ a < b ∧ for all c, if c < a
then c < b.

For an arbitrary n ∈ N, let a = n+1 and b = n+2. Then n < a ⇔ n < n+1
and a < b ⇔ n+1 < n+2. We also have that for all c, if c < a then c < b ⇔
for all c, c < n+1 then c < n+2 (by transitivity).

4

b)M1 : A = N with PM1 := {(m, 2m)|m ∈ N}

M1 |= φ⇔ For all c ∈ N, exists a, b ∈ N, (c,a) ∈PM1 , (a,b) ∈PM1 , for all d ∈
N if ((d,c) ∈ PM1) then (d,b) ∈ PM1

(c, a) ∈ PM1 ⇔ a = 2c
(a, b) ∈ PM1 ⇔ b = 2a
last part ⇔ for all d ∈ N c = 2d and b=2d

His example was wacko. Well, the model does not satisfy the formula. You can
look at my handin for an example.

Problem 3
a) ∀x∃y R(x, y) ` ∃y∀xR(x, y)

We can reuse the model M0 with an extension saying that RM0 = PM0 =
{(x, y)|x < y, x, y ∈ N} from Problem 2 to show thatM0 |= φ.

Given any number x in N you can always find a y s.t. x < y. However, given a
number y ∈ N it is not the case that y < (all possible numbers in N).

The sequent is invalid.

b) ∀x (P (x) ∨Q(x)) ` ∀xP (x) ∨ ∀xQ(x)

A := {0,1}
PM := {0}
QM := {1}

∀x (P (x) ∨ Q(x)) is obviously true, since either PM or QM will be true for
x=0 and x=1. In the second case, ∀xP (x) is not true, since PM(1) is not true.
∀xQ(x) is also not true for all x, since QM(0) is false.

5

c) ∀x∃y (P (x)→ Q(y)) ` ∀x (P (x)→ ∃y Q(y))

1 ∀x∃y P (x)→ Q(y) premise

2 x0

3 ∃y (P (x0)→ Q(y)) ∀xe 1

4 P (x0) assumption

5 P (x0)→ Q(y0) assumption

6 Q(y0) →e 4, 5

7 ∃y Q(y) ∃yi 6

8 ∃y Q(y) ∃ye 3, 5–7

9 P (x0)→ ∃y Q(y) →i 4–8

10 ∀x (P (x)→ ∃y Q(y)) ∀xi 2–9

d) ∀xR(x, x), ∀x∀y (R(x, y)→ R(y, x)) ` ∀x∀y∀z (R(x, y) ∧R(y, z)→ R(x, z))

The formula claims that if a relation R is reflexive and symmetrical, it must
also be transitive.

Let A :={1,2,3}
Let RM = AxA \ {(1,3),(3,1)}

6

DAT060
LV 6, Lecture 1

Decision Problem
φ1, ..., φn ` φ←→ φ1, ..., φn ` ¬φ has no models.

φ1 = ∀x¬R(x, x)
φ2 = ∀x∀y R(x, y)→ ¬R(y, x)
φ = ∀x∀y∀z R(x, y) ∧R(y, z)→ R(x, z)

Problem

φ1, φ2
?

` φ

φ1, φ2,¬φ
¬φ←→ ∃x∃y∃z R(x, y) ∧R(y, z) ∧ ¬R(x, z)

1) Introduce a, b, c (constants) φ1, φ2, R(a, b), R(b, c),¬R(a, c), ¬R(b, a), ¬R(c, b)
2) φ1:¬R(a, a), ¬R(b, b), ¬R(c, c)
φ2: ¬R(b, a), ¬R(c, b)

A finite counter model:

a b c
a 0 1 0
b 0 0 1
c ? 0 0

Answer: φ1, φ2 0 φ

For the expression φ1, ..., φn,¬φ we either get a finite counter model, or we
are unable to find a counter model at all. However, this does not work with
function symbols...

1

Function Symbols
F ={a, f(x)}
P = {R}

φ1, φ
?

` ∃x¬R(x, f(x))

Look for a counter model: T =φ1, φ,∀xR(x, f(x))
Switch φ1 to a constant a: ¬R(a, a)
φ will not give anything.

∀xR(x, f(x)) will give R(a, f(a)). This leads to: f(a) 6= a in any model.
We also have R(f(a), f(f(a))) = R(f(a), f2(a)) and ¬R(f(a), f(a)).
By φ we also have: R(a, f²(a)).
This far we have obtained: f(a) 6= a, f(a) 6= f²(a), a6=f²(a) and we can go on
like this...

Any model of T has to be infinite. a, f(a), f2(a), f3(a), ... all have to be dif-
ferent. This is not a finite counter model. However, there is an infinite counter
model: M with A = N, aM = 0, fM(n) = n+ 1, PM(p, q) means p < q.

In general, a counter model may have to be infinite. The same will hold with
“complex” sentences (not purely universal sentences).

Complex Example

φ1, φ
?

` ∃x∀y ¬R(x, y)

T’ = φ1, φ, ∀x∃y R(x, y)

any model of T’ has to be infinite! The model is the same as in the previ-
ous example.

This indicates that the decision problem in general is difficult. The question

we ask is: “Is there an algorithm, deciding φ1, ..., φn
?

` φ in general?” There is
no such algorithm...

Proof that there is no algorithm
We are going to encode problems that we know are not decidable. Such a prob-
lem is the Halting Problem, which we will encode in first-order logic.

Computer Model
Register Machine

2

https://en.wikipedia.org/wiki/Halting_problem

Given a programming unit (list of intsructions) and a finite number of regis-
ters {R1, R2, R3} to which the PU has access. Each register contains a natural
number. We also have a list L1, ..., Ln of instructions which do operations on
the registers.

Example

If we have two registers: x and y, we start with x = n and y = 0.

Our program looks like:
L1: y ←x
L2: if x == zero goto L5 else x = x-1
L3: y = y+1
L4: goto L2

L5: STOP

Test run: x = 2, y = 0

x y
L1 2 0
L2 2 2
L3 1 2
L4 1 3
L2 1 3
L3 0 3
L4 0 4
L2 0 4
L5 X X

In general, if we start with x = n, y = 0 the machine will stop with x = 0
and y = 2n. In this way, we can represent any program with a finite number of
registers and instructions. The halting problem is in general undecidable.

Example

A program that does not terminate is:

L1: y ← x
L2: goto L1

L3: STOP

It will loop inf.

The Halting Problem
Given a program and a starting state (x = 0, y = 0) will this program stop?

3

Halting Problem in Predicate Logic
We represent each line by a predicate symbol. Since a program is finite, we
will use a finite number of predicate symbols. The arity of these symbols is the
number of registers. (All the predicate symbols have the same arity.) We also
have 0 and Succ(x) = S(x). The program will be represented by a finite number
of sentences: φ1, ..., φn.

The question whether the program halts will be represented by T ` ∃x∃y P5(x, y)
(where P5 is the predicate symbol for L5 in the example.

This will show that φ1, ..., φn
?

` φ is “in general not solvable”.

Program
Let the theory T be:

L1: ∀x∀y P1(x, y)→ P2(x, x)
L2: ∀y P2(0, y)→ P5(0, y)) ∧ ∀x∀y P2(S(x), y)→ P3(x, y))
L3 : ∀x∀y(P3(x, y)→ P4(x, S(y)))
L4: ∀x∀y(P4(x, y)→ P2(x, y))

If we start with the state: T, P1(n, 0) ` P5(0, 2n) in general T, P1(n, 0) `
∃x∃y P5(x, y).

Program 2
Let the theory T’ be:

L1: ∀x∀y P1(x, y)→ P2(x, x)
L2: ∀x∀y(P2(x, y)→ P1(x, y))

If we start with the state: T ′, P1(0,0) 0 ∃x∃y P3(x, y), we can only deduce
P2(0, 0).

Decision Problem
In general we have k registers (r1, ..., rk) and in general we can represent the
instructions below in first-order logic.

• ri ← rj

• ri = ri + 1

• goto Lp

• if ri == 0 then goto Lp else ri = ri - 1

4

Yet another encoding of an undecidable problem
The problem is to decide if we can solve an equation P(x1, ..., xn) = Q(x1,
..., xn) where x1, ..., xn are natural numbers, and P, Q are polynomials with
natural number coefficients. There is no such algorithm.

The theory T: 0, S(x), add, mul.

∀x add(x,0) = x
∀x∀y add(x,S(y)) = S(add(x,y))
∀x mul(x,0) = 0
∀x∀y mul(x,S(y)) = add(mul(x,y)x)

The question is: Can we solve x³=y²+2? Or: T
?

` ∃x∃y mul(mul(x, x), x)
= S(S(mul(y, y)))

This will hold iff we cand find natural numbers p and q s.t. p³=q²+2.

Restrictions of Predicate Logic

Graphs
Where R(x,y) means that x is connected to y. A model M is a graph. The
question is: Can we express reachability, in predicate logic? I.e. are two given
elements connected by a path?

Language: R(x,y), a, b
Theorem: There is no sentence φ s.t. M |= φ ←→ aM bM are connected by a
path.

Proof: The completeness theorem and sondness theorem, generalized.
Recall that a theory T is a set of sentences, which can be infinite. T ` φ means
that we can find φ1, ..., φn ∈ T s.t. φ1, ..., φn ` φ. T |= φ means that ∀M M
|= T → M |= φ means thatM |= ψ for all ψ ∈ T.

T ` φ ←→ T |= φ
T 0 φ ←→ T 2 φ
T 0 ⊥ ←→ T 2 ⊥
T is consistent ←→ T has a model

Compactness Theorem

T has a model←→ for all finite subsets φ1, ..., φn of T, φ1, ..., φn have a model.

Proof:
T is consistent ←→ All finite subsets of T is consistent

5

Using first-order logic we can express that aM and bM are connected by a
path of length ≤ 1.

δ1: a = b ∨R(a, b)
δ2: δ1 ∨ ∃xR(a, x) ∧R(x, b)
δ3: δ2 ∨ ∃x1∃x2R(a, x1) ∧R(x1, x2) ∧R(x2, b)
.
.
.
M |= δk ←→ aM, bM connected by a path of length ≤ k

Proof of the theorem:
Assume we have a such a sentence φ and consider the theory. This will be infi-
nite.

φ, ¬δ1, ¬δ2, ¬δ3, ...

The theory is infinite.

By the compactness theorem it should have a model. If we for instance take φ,
¬δ3, ¬δ17 it should have a model (any finite subset should have one). Hence,
the theory should have a model: M. aM, bM should be connected, but this
is a contradiction since we have stated that we have no path of length 1, 2, 3,

There is therefore no formula φ such thatM |= φ and we cannot prove reacha-
bility in predicate logic.

6

DAT060
LV 6, Lecture 2

Problem
Γ = {∀x.S(x, x), ∀x∀y.(S(x, y)→ x = y)}

IfM |= Γ and so SM ⊆ A². What is SM?

M |= ∀x.S(x, x)⇔ for all a ∈ A, (a,a) ∈ SM ⇔ {(a,a) | a ∈ A} ⊆ SM
M |= ∀x∀y.(S(x, y)→ x = y) ⇔ for all a, b ∈ A, if (a,b) ∈ SM then a = b ⇔
SM ⊆ {(a, b)|a = b, a, b ∈ A} = {(a, a)|a ∈ A)}

This leads to: {(a, a)|a ∈ A} ⊆ SM ⊆ {(a, a)|a ∈ A}

Problem 2.4.11 d)
Is {φ =∃x.S(x, x), ψ = ∀x∀y.(S(x, y)→ x = y)} consistent?

The set is consistent iff there is a modelM s.t. M |= φ andM |= ψ.

LetM have A = N, SM = {(a, a)|a ∈ N},M |= ψ (which we saw above).
M |= φ ⇔ exists a ∈ N, (a,a) ∈ SM. In order to prove this we can let a = 0.
Then (0,0) ∈ SM.

Problem
Let Γ = {φ1 = ∀x.¬S(x, x), φ2 = ∀x∀y∀z.(S(x, y) ∧ S(y, z) → S(x, z)), φ3 =
∀x∃y.S(x, y)}

a) Show that Γ is satisfiable (holds for at least one model).
We takeM given by A = N and SM = {(m,n)|m < n, m, n ∈ N}

b) Show that any model of Γ is infinite. I.e. if M |= Γ, with carrier A,
then |A| is infinite.

1

By def. A 6= ∅, so a0 ∈ A.
Because of φ3 there is a1 ∈ A such that (a0, a1) ∈ SM.
(a0, a1) ∈ SM, (a1, a2) ∈ SM, (a2, a3) ∈ SM, ...
(ai) for each i ∈ N s.t. (ai, ai+1) ∈ SM

We want to show that ai 6= aj for i < j. We use contradiction.

• Assume ai = aj

• (ai, ai+1) ∈ SM, (ai+1, ai+2) ∈ SM, ..., (aj−1, aj) ∈ SM

From these two points we can use thatM |= φ2 to conclude that (ai, aj) ∈ SM.
Using the assumption we see that (ai, ai) ∈ SM but this contradictsM |= φ.

In the end, |A| is infinite.

c) For each n ≥ 2, define a sentence φn s.t. M |= φn ⇔ M has at least n
elements.
φn ≡ ∃x1∃x2, ..., ∃xn, ¬(x1 = x2) ∧ ¬(x2 = x3) ∧ ... which we can write as:

φn ≡ ∃x1∃x2, ..., ∃xn, ∧
1≤i≤j≤n

¬(xi = xj)

d) Show for any n ≥ 2, Γ ` φn is valid.
By completeness we know that if: for allM,M ` Γ thenM |= φ. This in turn
implies that Γ ` φn.

Show that for all M, M |= Γ then M |= φn. However, M |= Γ ⇒ M is
infinite ⇒ M has at least n elements ⇒ M |= φn.

Compactness Theorem
For each set of formulas Γ, if all finite subsets of Γ are satisfiable, then Γ is
satisfiable.
Γ = {∀x∀y.(x = y → ¬(x = y)), ∀x.x = x}
∆ = {∀x.x = x}

There is no set of formulas T, s.t. for everyM,M |= T ⇔ M is finite.

Let Q = T ∪ {φn | n ∈ N}

If M |= Q ⇒ (M |= T and M |= {φn | n ∈ N}) ⇔ M is finite and M is
infinite. This is clearlya contradiction! There is noM s.t. M |= Q.

If we want to show that there exist an M and that M |= Q we can use the
compactness theorem. We can use it to show that it is enough to show that (for
all ∆ ⊆ Q, ∆is finite ⇒ ∆satisfiable). For an arbitrary ∆ ⊆ Q,∆finite show that

2

there existsM,M |= ∆.

∆ ⊆ Q =T ∪ {φn | n ∈ N}
∆ = ∆1 ∪∆2, ∆1 ⊆ T, ∆2 ⊆ {φn|n ∈ N}
∆2 = {φi|i ∈ B, B ⊆ N} (B is finite)
M |= ∆2 ⇔ M has at least max(B) elements

We pickM with domain A = {0, 1, ..., max(B)}. We have shown thatM |= ∆2,
we need to show thatM |= ∆1.

∆1 ⊆ T, hence we show instead thatM |= T.

M |= T ⇔ M is finite

M is finite, since |A| is max(B) which is finite!

M |= ∆1,M |= ∆2 ⇒M |= ∆⇒ ∆ is satisfiable.

We did hower say that there is no M, M |= Q so there is some sort of contra-
diction somewhere. I didn’t really understand.

3

DAT060
LV 6, Lecture 3

Compactness Theorem
T has a model if all finite subset of T has a model.

A relation is a well-founded relation: a → b (a,b) ∈ SM, S ⊆ A², if it has no
infinite paths. An infinite path would be a0→a1→..., an ∈ S, ∀n.(an, an+1) ∈ S.

Remark: if we have a→a we have a→a→a→a→...

Theorem

There is no sentence φ such thatM |= φ←→ RM is well founded.

Proof: by contradiction
Assume φ.
Add to the language, constants: a0, a1, a2, ...
Consider T = φ, R(a0, a1), R(a1, a2), ...

We claim that T has a model (but this will be a contradiction).

By the compactness theorem we know that all finite subsets of T has a finite
model. A model of T will look like a0M → a1M → a2M →..., so it is not well
fonded. This is a contradiction with φ ∈ T,M |= φ.

Example

φ = ∀x∀y.¬R(x, y)
M |= φ→ RM is well-founded : a → b

φ = ∀x∀y∀z.¬(R(x, y) ∧R(y, z))

We can state that there is no path of length > k for a fixed k.
We cannot state that there is no infine path.

1

Temporal Logic
LTL and CTL are extensions of propositional logic. There are no quantifiers(!)
instead we have modal operators.

3 Traditions in Logic

• Model Theory: |=

• Proof Theory: `

• Algebraic Logic: φ↔ ψ, φ→ ψ

A model in algebraic logic

α : PVar → {0,1}
α |= φ by induction on φ
α |= P α(P) = 1
α |= ¬φ not α |= φ
α |= φ ∧ ψ α|= φ and α |= ψ
α |= φ ∨ ψ α |= φ or α |= ψ

Note: PVar is a propositional variable.

Proof Theory

φ1, ..., φn ` φ, what is the derevation of φ from φ1, ..., φn?

` φ↔|= φ

Linear Temporal Logic - LTL
The idea: The truth value of a propositional variable is not simply 0 or 1 but
an infinite sequence of 0s and 1s. A model α: PVar → {0,1}N.

Motivation: Circuit analysis!

Givan a Flip-Flop (latch) you need to consider the time (clock). In this case we
need to be able to represent:

r(0) = 0

r(t+ 1) = ¬(p(t) ∧ s(t))

s(t+ 1) = ¬(q(t) ∧ r(t))

we introduce the modal operations:

• Xp (Xp)(t) “=” p(t+1) next

2

http://Flip-flop (electronics)

• Gp (Gp)(t) “=” ∀x ≥ t p(x) globally

• Fp (Fp)(t) “=” ∃x ≥ t p(x) finally

We will have:
Gp ←→ p ∧ XGp
Fp ←→ p ∨ XFp

Syntax Definition

φ ≡ p|φ ∧ φ|φ ∨ φ|φ→ ψ|¬φ|Xφ|Fφ|Gφ

Model Definition

α |= φ
α : PVar → {0,1}N

|= φ
∀α(α |= φ)

If we have the variables: p, q, r, a model in propositional logic is a sequence of
three boolean values: p = 0, q = 1, r = 0 from which φ can be calculated.

In LTL a model for three variables, p, q, r, is given by time as an additional
element. How do we then determine if α |= φ holds?

time 0 1 2 3 4
p 0 0 0 0 0
q 1 0 1 0 1
r 1 1 1 0 0

α 2 p, α |= q, α |= r

α |= p ≡ αp(0) = 1
α |= ¬φ ≡ not α |= φ
α |= φ ∧ ψ ≡ α |= φ and α |= ψ
α |= φ ∨ ψ ≡ α |= φ or α |= ψ
α |= Xφ ≡ α′ |= φ
α |= Gφ ≡ for all k ≥ 0 α(k) |= φ
α |= Fφ ≡ exists k ≥ 0 α(k) |= φ

We define α |= φ for a given α: PVar → {0,1}N.

Given α we can define α’: PVar → {0,1}N, p ∈ PVar, α’ p(n) = α p(n+1)

3

α’

0 1 2 3
p 0 0 0 0
q 0 1 0 1
r 1 1 0 0

α’: p 7−→ n 7→ α p(n+1)

α”: p 7−→ n 7→ α p(n+2)
α(³): p 7−→ n 7→ α p(n+3)
αk: p 7−→ n 7→ α p(n+k)

Example

α
0 1 2 .

p 0 1 1 .

α 2 p, α′ |= p, α′′ |= p, α(3) |= p, ...
α 2 Gp, α′ |= Gp, α |= XGp
α |= Fp since α′ |= p

Theorem
If we have ψ s.t. |= ψ → φ ∧Xψ then |= ψ → Gφ

Proof:
Assume |= ψ → φ ∧Xψ.
α |= ψ, show α |= Gφ

α |= ψ so α |= φ ∧X, so α |= φ and α |= Xψ

∀β(β |= ψ → β |= φ ∧ Xψ) so α′ |= ψ → α′ |= φ ∧ Xψ so α′ |= φ and
α′ |= Xψ and α(2) |= ψ

Remark

Gφ is the greatest solution of the equation in ψ: ψ = φ ∧Xψ. It means that:

1. it is a solution Gφ = φ ∧Xψ

2. if ψ is a another solution ψ ≤ Gφ and |= ψ → Gφ

Fφ is the least solution of the equation in ψ: ψ = φ ∨Xψ

We can define the relation φ ≤ ψ on LTL formula. φ ≤ ψ means |= φ → ψ.
This relation satisfies φ ≤ φ, φ≤ψ ψ≤δ

φ≤δ (if φ ≤ ψ and ψ ≤ δ then φ ≤ δ).

Induction Principle
For any formula φ we have:

4

|= (G(φ→ Xp) ∧ φ)→ Gφ

This is because: G(φ → Xφ) means “always if φ holds then φ will hold next”
and φ if φ holds at the start. Hence, φ must hold - always.

Formally

Given α |= G(φ→ Xφ) and α |= φ then α |= Gφ for all k: α(k) |= φ→ Xφ and
α(k) |= φ→ α(k+1) |= φ so we can show α(k) |= φ by induction on k.

How α is given in practice

We want to study a system which will be represented by a “transition system”
(S, →, L) where:

S is a finite set of “states”
→ is a binary relation on S that satisfies: ∀a∃b.a→ b
L is a function, L: S → PVar → {0,1}

A path in (S, →, L) is a sequence π = s0 → s1 → Any path will define
a model α.

5

DAT060
LV 7, Lecture 1

Linear Temporal Logic
Fφ ←→ φ∨ XFφ
Fφ the least solution of ψ ←→ φ ∨ Xψ.

Fφ is a solution
if ψ ←→ φ∨ Xψ we have Fφ→ ψ

The equation ψ ←→ φ∨ Xψ has a greatest solution.
If we take ψ = True then X True ←→ True.

The relation |= φ1 → φ2 is reflexive and transitive.
True |= φ→ True

If we have ψ = φ∨ Xψ = φ∨ X(φ∨ Xψ)=φ∨ Xφ∨ X² ψ = φ∨ Xφ∨ X²φ ∨
X³ψ = ...

ψ ←→ φ∧ Xψ has a least solution: ψ = False and a greatest solution: ψ =
Gφ.

Intuitively Fφ= φ∨ X φ ∨ X²φ ∨... and Gφ= φ ∧ Xφ ∧ X²φ ... but in our
language we cannot write infinite formulas.

What does |= φ mean?
A model M = (S,→, L) where S, → is a transition system (graph) where
∀s∃t.s→ t. L: S → PVar → {0,1}.

Example

p, q

s1

p, q

s2

p

s3

1

p q
s1 1 1
s2 1 1
s3 1 0

Here, M |= Gp but M 2 Gq. M 2 Gq because s3 → s3 → ... is a path in
M. M 2 Fq because s1 → s2 → s1 → ...

Definition

A path σ = s0 → s1 → s2 → ... is a function σ : N→S s.t. ∀n.σn→ σ(n+ 1).
We define σ |= φ by induction on φ. σ |= p means L(σ0)p = 1. σ = s1 → s2 →
s1 → s2. σ |= Xp means σ′ |= φ where σ′ = σ1→ σ2→ σ2→ ... σ′n = σ(n+1)
or more generally σ(k)n = σ(n+ k).

We define M |= φ for all paths σ of M we have σ |= φ. |= φ means: for
all modelsM we haveM |= φ.

New Operator
ψ, φ ::= ...|Fφ|Gφ|φUψ
σ |= φ ∨ ψ means ∃k.σ(k) |= ψ ∧ ∀l < k σ(l) |= φ
φUψ ←→ ψ ∨ (φ ∧X(φUψ))

The least solution of the equation δ ↔ ψ ∨ (φ ∧Xδ)

If we have σ |= φ U ψ we can have σ |= φ and σ |= ψ.

Path
A path s1 → s2 → s3 → s3 →... and another path s1 → s2 → s1 → s2 → ...

Propositional Logic Likeliness
For propositional logic a model is just L: Pvar → {0,1}.

Model Checking
Given as input: M = (S,→, L) and φ we get as output either a yes (∀σ.σ |= φ)
or a no (a counter example that shows σ 2 φ).

2

Traffic Light Example
G(red → red U (yellow ∧ X(yellow U green))
G(red → X(red U (yellow ∧ X(yellow U green))))

In order to avoid multiyle lights at the same time we need to add G(red ←→
(¬yellow ∧ ¬green)).

Examples
Prove that: |= G(φ→ ψ)→ (Gφ→ Gψ)

We have to prove that for all model M and for all path σ in M we have
σ |= G(φ→ ψ)→ (Gφ→ Gψ). This means that if σ |= G(φ→ ψ) and σ |= Gφ
we have σ |= Gψ.

This is similar to: ∀x.(P (x)→ Q(x)), ∀x.P (x) ` ∀x.Q(x)

Corresponding to ∃x.(P (x) ∨ Q(x)) ←→ ∃x.P (x) ∨ ∃x.Q(x) we have F(φ ∨ ψ)
↔ (Fφ ∨ Fψ).

∃x.(P (x) ∧Q(x))→ ∃x.P (x) ∧ ∃x.Q(x) but not ←, similarly we have F(φ ∧ ψ)
→ (Fφ ∧ Fψ). In order to show Fφ ∧ Fψ 9 F(φ ∧ ψ) we must show that
|= Fφ∧Fψ → F (φ∧ψ). We have to findM, σ, φ, ψ s.t. σ 2 Fφ∧Fψ → F (φ∧ψ)
which means σ |= Fφ, σ |= Fψ, σ 2 F (φ ∧ ψ).

For instance:

p

s1

q

s2

p q
p 1 0
q 0 1

σ = s1 → s2 → s2 → ... which shows σ |= G(¬(p ∧ q)).

GFφ means “φ holds infinitely often”.
σ |= GFφ means “∀k.∃l ≥ k.σ(l) |= φ
σ |= G(Fφ) means “∀k.σ(k) |= Fφ, ∀k.∃k′.σx(k+k′) |= φ.

FGψ means “eventually ψ will always hold”.
We have |= (FGφ)→ (GFφ), but 2 (GFφ)→ (FGφ)

In our example we have σ = s1 → s2 → s2 → ... where p holds every other state
(infinitiely often). However, it does not ever hold globally.

3

Special Case for deciding M |= φ

If φ = FGp1 ∨ FGp2 ∨ ... ∨ FGpn we have ¬φ ←→ GF (¬p1) ∧ ... ∧ GF (¬pn).
Instead of proving ∀σ.σ |= φ we show ∃σ.σ |= ¬φ.

The problem in general is that there are infinitely many possible paths.

Idea of Algorithm

1. Look at the strongly connected components of this graph (S,→). SCC is
an equivalence class for the relation ∼.

2. Look at all non trivial SCCs. An SCC is trivial if it has “one point no
path”.

Main Remark

Any infinite path forM will eventually stay in one non trivial SCC. Hence, we
can find σ |= GF (¬p1) ∧ ... ∧ GF (¬pn) iff there is an SCC where ¬p1, ...¬pn
holds for some state of this SCC. Conversely, if there is an infinte path σ |=
GF (¬p1) ∧ ... ∧ GF (¬pn) eventually this path will stay in an SCC where we
have ¬p1,¬p2, ...,¬pn.

Hamiltonian Cycle Example
In genera, to dediceM |= φ has to be “complicated”. Coding of the Hamiltonian
Path Problem.

Given a graph G=(V,E), can we find vσ1 → vσ2 → vσ3 → ... → vσn where
σ1, ..., σn is a permutation of 1,...,n. Can we find a path in G which visits each
vertex exactly once?

Solve this with LTL
S=V ∪ {b} and s → t means s,t ∈ V or t=b.

Atomic formulae: pv for each v ∈V, with L(b) pv = 0 and

{
L(v)pv′ = 1 v = v′

L(v)pv′ = 0 v 6= v′
.

ψ = ∨
v∈V

G(¬p) ∨GFpv ∧XF (pv))

σ |= ψ means either σ does not visit v or σ visits v twice. This means that

M |= ψ ↔ no hamiltonian cycle. Any algorithm for decidingM
?

|= φ has to be
atleast NPC.

4

DAT060
LV 7, Lecture 2

Computational Tree Logic

Syntax
state: ψ, φ := p|¬φ|ψ ∨ φ|ψ ∧ φ|Aα|Eα
path: α, β := Xφ|Fφ|Gφ|φ ∪ ψ

Aα means “for all path” α holds on this path.
Eα means “there exists a path” s.t. α holds on this path.

Model
Same as the LTL model.

A modelM=(S, →, L)
S is a finite set, an element of S is called a state.
→ is a binary relation on S s.t. ∀s∃t.s→ t. (S, →) is a transition system.
L:S → PVar → {0,1} or L: S xPvar → {0}

Semantics
M |= φ whereM is a model and φ is a CTL formula.

M, s |= φ, s ∈ S state ofM
σ |= α, σ is a path ofM and α is a path formula

s |= p↔ L(S, p) = 1
s |= ¬φ↔ not s |= φ
s |= φ ∨ ψ ↔ s |= φ or s |= ψ
s |= φ ∧ ψ ↔ s |= φand s |= ψ
s |= Aα↔for all paths σ starting from s, s.t. σ |= α
s |= Eα↔ there exists a path σ starting from s, s.t. σ |= α
σ |= α where σ = σ0, σ1, σ2, ... is a path inM and σ0, σ1, σ2, ... are elements of S.

σ |= Xφ↔ σ1 |= φ

1

σ |= Gφ↔ ∀k.σk |= φ
σ |= Fφ↔ ∃k.σk |= φ
σ |= φ ∪ ψ ↔ ∃k.σk |= ψ ∧ ∀l < k.σl |= φ (we can have k = 0, in which case
σ0 |= ψ)

|= φ means ∀M.M |= φ
|= φ↔ ψ means ∀M.M |= φ↔ ψ,M |= φ↔M |= ψ
|= φ→ ψ means ∀M.M |= φ→M |= ψ

AGφ↔ φ ∧AX(AGφ)
AFφ↔ φ ∨AX(AFφ)
EGφ↔ φ ∧ EX(EGφ)
EFφ↔ φ ∨ EX(EFφ)
A(φUψ)↔ ψ ∨ (φ ∧AX(φUψ))
E(φUψ)↔ ψ ∨ (φ ∧ EX(φUψ))

So AFφ is a solution of the equation ψ ↔ φ ∨ AXψ. This is the least solu-
tion of this equation.

Assume that we haveM s.t. M |= ψ ↔ φ ∨ AXψ. We showM |= AFφ → ψ.
However, if we haveM|= ¬ψ → ¬AFφ, which we will prove instead.

Assume we take a state s ofM and we assume that s|= ¬ψ. We then show from
this: s |= ¬AFφ. In order to do this we build a path σ = s → s1 → s2 → ...
such that s 2 φ, s1 2 φ, ...

From our assumption we get that: s |= ψ ↔ s |= φ ∨ AXψ. We know that
s |= ¬ψ ↔ s 2 ψ so we have s 2 φ ∨ AXψ so s 2 φ and s 2 AXψ. Hence,
s1 2 ψ which leads to s1 2 φ. We have s2 2 ψ which ultimately leads to
s2→ s3→ s4→ ... where no state satisfies φ.

Model Checking Algorithm
Given M, φ we compute SAT (φ) ⊆ S. SAT (φ) = {s ∈ S|s |= φ} will be an
invariant of this algorithm. In the end we get thatM |= φ↔ SAT (φ) = S.

Furthermore if SAT (φ) 6= S any s ∈ S \SAT (φ) will satisfy s 2 φ.

What is used in a crucial way is that S is a finite set. This means that this will
only be an algorithm for model checking. GivenM we can decideM |= φ.

(It is also possible to decide |= φ↔ ∀M.M |= φ, but we will not talk about this.)

2

Idea of Algorithm

SAT (p) = {s ∈ S|s |= p} = {s ∈ S|Ls p = 1}
SAT (¬φ) = S \SAT (φ)
SAT (φ ∧ φ) = SAT (φ) ∩ SAT (ψ)
SAT (φ ∨ ψ) = SAT (φ) ∪ SAT (ψ)
SAT (φ→ ψ) = SAT (¬φ∨ψ) = SAT (¬φ)∪SAT (ψ) = (S \SAT (φ))∪SAT (ψ)

GivenM =(S,→, L) we define N(s) ⊆ S where N(s) = {s′ ∈ S|s→ s′}.
We also consider Pow(S), the set of all subsets of S. Pow(S) is a partially
ordered set (poset) for the inclusion relation I, J ∈ Pow(S), I ⊆ J .

We have two operations:

pre∀ : Pow(S)→ Pow(S), I 7→ {s ∈ S|N(s) ⊆ I} (if s→ s′ then s′ ∈ I)
pre∃ : Pow(S) → Pow(S), I 7→ {s ∈ S|N(s) ∩ I 6= φ} (there exists s′ ∈ I, s.t.
s→ s′)

SAT (AFφ)
Y0 := SAT (φ), hence Y0 ⊆ SAT (AFφ)
Y1 := Y0 ∪ pre∀(Y0), add all states for which all following states satisfies φ
Y2 := Y1 ∪ pre∀(Y1), ...
.
.
Yn+1 := Yn ∪ pre∀(Yn), therefore Yn ⊆ SAT (AFφ)
In this way we build an increasing sequence of subsets of S: Y0 ⊆ Y1 ⊆ Y2...
S is finite, hence we have to stop eventually and we will get Yn+1 = Yn.
Then we have Yn = Yn+1 = Yn+2 and the solution is Yn = SAT (AFφ).

SAT (EFφ)
X = SAT (EFφ)
Y0 := SAT (φ)
Yn+1 := Yn ∪ pre∃(Yn)
s ∈ X means that we have a path from s into SAT (φ). We want to collect
all states such that there is some path that goes into SAT (φ).
s ∈ Y0 means that we have a path of length 0 into SAT (φ).
s ∈ Y1 means that we have a path of length ≤ 1 into SAT (φ).
s ∈ Yn means that we have a path of length ≤ n into SAT (φ).
The solution will be Yn = SAT (EFφ).

SAT (EGφ)
We can use that ¬EGφ↔ AF (¬φ)
SAT (EGφ) = S \SAT (AF (¬φ))

SAT (AGφ)
SAT (AGφ) = S \SAT (EF (¬φ))

3

https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Partially_ordered_set

Examples

s0 s1 s2 s3

r

s4 s5

SAT (EFr) = S \ {s5}
Y0 := SAT (r) = s4
Y1 := Y0 ∪ pre∃(Y0) = s4, s1
Y2 := Y1 ∪ pre∃(Y1) = s4, s1, s0, s3
Y3 := Y2 ∪ pre∃(Y2) = s4, s1, s0, s3,s2
Y4 := Y3 ∪ pre∃(Y3) = s4, s1, s0, s3, s2

Microwave
s1

s4 s2

s3

M=

close starting cooking
s1 0 0 0
s2 0 1 0
s3 1 0 0
s4 1 1 1

4

M |= AG(start→ AFcooking)?
M |= AG(start ∧ close→ AFcooking)?
SAT (AFcooking)?

N(s2) = {s1, s3}
N(s2) * Y0
Y0 := SAT (cooking) = s3
Y1 := Y0 ∪ pre∀(Y0) = s3 = Y0
Y2 := Y1 ∪ pre∀(Y1) = Y0
SAT (AFcooking) = s3

M
?

|= start→ AFcooking
SAT (start) * SAT (AFcooking)soM 2 start→ AFcooking

M |= start ∧ close→ AFcooking
Yes! SAT (start ∧ close) = s3 ⊆ SAT (AFcooking)

This is an example of fixed-point solution: F.Pow(S)→ Pow(S), I 7→ SAT (φ)∪
pre∀(I) where J = SAT (AFφ) is the least fixed-point of this operation. F (J) =
J and F (I) = I → J ⊆ I.

Look in the book: Chapter 3.7.

5

DAT060
LV 7, Lecture 3

Example
FixM
M = ({s0, s1, s2, s3}, {(s0, s1), ...}, L)
Σ = {a, b}

s1

b

s2

a

s0

a,b

s3

O |=v(O)=s0 Ga⇔ ∀i.i |=v a
(i): ∃v s.t. ∀i.i |= a?

We assign v := (s0, s3, s0, s3)
(ii): ∀v s.t. ∀i.i |= a?

This does not hold. E.g. v := (s0, s2, s2, ...)

O |=v(O)=s0 GFb⇔ ∀i |=v Fb⇔ ∀i∃j ≥ i.j |=v b
(i): Yes. v := (s0, s1, s2, s2...)

We see that if i0 ≥2 then v(i0) = s2 and in particular v(i0)(b) = True.
If i0 = 0||1 then v(2) = s2 and v(2)(b) = True

(ii): ∀v∀i∃j ≥ i.j |=v b
Bevisa med Natural Deduction

1

Equality
¬AGφ ≡ EF¬φ ∈ CTL
1)¬Aψ ≡ E¬ψ
2)¬Gψ ≡ F¬ψ

So, ¬AGψ ≡ E¬Gψ ≡ EF¬ψ

Proof of 1

∀s.s |= ¬Aψ ↔ s |= E¬ψ,
s0 |= ¬Aψ ⇔ s0 2 Aψ ⇔ ∃v(v(0) = s0∧ 2v ¬ψ) ⇔ Ev.(v(0) = s0∧|=v ¬ψ) ⇔
s0 |= E¬ψ

Proof of 2

∀i.i |=v ¬Gψ′ ↔ i |= F¬ψ′
i0.i0 |=v ¬Gψ′ ⇔ i0 2v ψ′ ⇔ ∃j ≥ i0.j 2 ψ′ ⇔ ∃j ≥ i0.j |= ¬ψ′ ⇔ i0 |=v F¬ψ′

Assignment 5
Problem 1

∃M.M |=φ = SAT (φ)

In order to show that SAT is undecidable you assume that SAT is decidable.
This means that there exists an algorithm A .s.t ∀φ.A(φ) = True ⇔ SAT (φ).
We construct an algorithm B that takes as input: φ and outputs: ¬A(¬φ).

We show that ∀φ.B(φ) = True⇔ ∀M.M |= φ.

If B(φ) = True ⇔ A(¬φ) = False ⇔ ∀M.M 2 ¬φ ⇔ ∀M.M |= φ⇔ φ valid,
hence B decides validity. But validity is undecidable so this is a contradiction.
Hence, we can conclude that SAT is undecidable.

Problem 2

φ ≡ ∀x.P (x, f(x)) ∧ ∃x∀y.P (x, y)

A model that satisfies φ:Msat := (A,PM = A2, fM(x) = x)

A model that do not satisfies φ: Mnot := ({0, 1}, PM := {(0, 1), (1,0)}, fM(x) =
x̄)

2

Problem 3

∀x(P (x)→ ¬Q(x)) ` ¬∃x(P (x) ∧Q(x))

1 ∀x(P (x)→ ¬Q(x)) premise

2 ∃x(P (x) ∧Q(x)) assumption

3 x0 P (x0) ∧Q(x0) assumption

4 P (x0) ∧e1

5 P (x0)→ ¬Q(x0)

6 ¬Q(x0) →e

7 Q(x0) ∧e2

8 ⊥ ¬e

9 ⊥ ∃e 2, 3–8

10 ¬∃x(P (x) ∧Q(x)) ¬i 2–9

Problem 5

M |= φ⇔ |M| = 2
φ≥2 := ∃x∃y.x 6= y
M |= φ⇔ |M| ≥ 2
φ≥3 := ∃x∃y∃z.x 6= y ∧ y 6= z ∧ x 6= z
φ≥n := ∃x̄ ∧

i,j i6=j
xi 6= xj

Γ = {φ≥n|n ∈ N}
|M| = n ∧M |= − ⇒M |=φ≥n+1 ⇒ ⊥

M |= Γ⇔ |M| =∞

M |= ∧φ⇔ |M| =∞
ψ := ¬ ∧

φ∈Γ
φψ /∈ PL = ∨

φ∈Γ
¬φ

M |= ψ ⇔ ¬|M| =∞⇔ |M| ≤ ∞

3

Logic in Computer Science

For a given language F ,P, a first-order theory is a set T of sentences (closed formulae) in this given
language. The elements of T are also called axioms of T .

A model of T is a model M of the given language such that M |= ψ for all sentences ψ in T .

T ` ϕ means that we can find ψ1, . . . , ψn in T such that ψ1, . . . , ψn ` ϕ.
T |= ϕ means that M |= ϕ for all models M of T .

The generalized form of soundness is that T ` ϕ implies T |= ϕ and completness is that T |= ϕ
implies T ` ϕ.

If T is a finite set ψ1, . . . , ψn this follows from the usual statement of soundness (` δ implies |= δ)
and completness (|= δ implies ` δ). Indeed, in this case, we have T ` ϕ iff ` (ψ1 ∧ · · · ∧ ψn) → ϕ and
T |= ϕ iff |= (ψ1 ∧ · · · ∧ ψn)→ ϕ.

Compactness Theorem

Theorem 0.1 A theory has a model iff any of its finite subtheory has a model

Application 1: non-standard model

We recall that the theory of Peano arithmetic PA is a theory for the language F = {zero,S,+, ·} and
with no predicate symbol apart from equality. We add the special constant u with the axioms

u 6= zero, u 6= S(zero), u 6= S(S(zero)), . . .

By the Compactness Theorem, this theory has a model. The domain of this model has to contain
an element which is different from the semantics of zero, S(zero), S(S(zero)), . . . This is a non standard
model of arithmetic.

Application 2: transitive closure is not first-order definable

In the language with one binary relation symbol R and two constant a, b, we can state

Theorem 0.2 There is no formula ϕ such that M |= ϕ iff there is a path from aM to bM

Indeed, if there was such a formula ϕ then the theory ϕ, ¬δ0, ¬δ1, . . . would be consistent, by the
Compactness Theorem, where δ0 is a = b and δn+1 is δn ∨ ∃z1 . . . zn.R(a, z1) ∧ · · · ∧R(zn, b). But this
is a contraction.

Application 3: to be well-founded is not first-order definable

We recall that a relation S is well-founded iff there is no infinite sequence x0, x1, . . . such that S(x0, x1), S(x1, x2),
In the language with one binary relation symbol R we can state

Theorem 0.3 There is no formula ϕ such that M |= ϕ iff RM is well-founded.

1

We add to the language infinitely many constants a0, a1, a2, . . . and, if there is such a formula ϕ,
we consider the theory

ϕ,R(a0, a1), R(a1, a2), R(a2, a3), . . .

By the Compactness Theorem, this theory has a model, which is a contradiction.

Three traditions in logic

Before starting the presentation of Linear Temporal Logic, I started to recall the 3 traditions in logic,
that are important for propositional logic (and temporal logics)

1. model theory

2. proof theory

3. algebraic logic

We present this in the case of propositional logic, where the syntax is

ϕ ::= p | ¬ϕ | ϕ→ ϕ

where p ranges over atoms. We can then define ψ0 ∨ ψ1 = ¬ψ0 → ψ1 and ψ0 ∧ ψ1 = ¬(ψ0 → ¬ψ1).

Model Theory

In the model theoretic approach, we start by defining what is a model α which is a function from the
atomic formulae to {0, 1}. We then define α |= ϕ by induction on ϕ.

We write |= ϕ iff α |= ϕ for all models α.

Proof Theory

In the proof theoretic approach, we define when ϕ is derivable, notation ` ϕ, and more generally, when
ϕ is derivable from hypotheses ψ1, . . . , ψk, notation ψ1, . . . , ψk ` ϕ.

In this course, we presented this following the notion of natural deduction.

Another way to present the notion of derivability is via the so-called notion of Hilbert-style proof
system (which was actually already in Frege). It consists in giving some axioms and to say that ϕ is
derivable iff we can build a derivation tree using as the only derivation rule the modus-ponens rule

ψ ψ → δ

δ

and the leaves are axioms.
For instance, for proposition a possible axiom system is the given by the 3 axiom schemas

• ϕ→ ψ → ϕ

• (ϕ→ ψ → δ)→ (ϕ→ ψ)→ ϕ→ δ

• (¬ϕ→ ψ)→ (¬ϕ→ ¬ψ)→ ϕ

With this presentation it is not at all obvious that, e.g. p→ p is derivable!

Both presentations are actually equivalent, and we have ` ϕ iff |= ϕ.

2

Algebraic logic

An important remark if that, if we define ϕ ≡ ψ by α |= ϕ iff α |= ψ (or equivalently ` ϕ → ψ and
` ψ → ϕ), then we have the rules

ϕ ≡ ψ
¬ϕ ≡ ¬ψ

ϕ0 ≡ ψ0 ϕ1 ≡ ψ1

ϕ0 → ϕ1 ≡ ψ0 → ψ1

It is then natural to write simply ϕ = ψ instead of ϕ ≡ ψ and to consider that we have two operations
(negation and implication). It is also natural to write ϕ 6 ψ instead of ` ϕ→ ψ.

We see then the set of formulae as a set equipped with some operations, satisfying some algebraic
laws (e.g. 1 = p→ p). The relation 6 is a poset relation.

This was the view of logic coming from Boole (1815-1864). One can consider more generally algebras
satisfying the same laws as the one of proposition formulae, and these are called Boolean algebras. In
term of the operations ¬,∨, one possible list of equational axioms for Boolean algebra is

x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∨ y = y ∨ x x ∨ 1 = 1 x ∨ 0 = x

x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∧ y = y ∧ x x ∧ 1 = x x ∧ 0 = 0

¬(x ∨ y) = ¬x ∧ (¬y) 1 = ¬ 0 0 = ¬1 ¬(¬x) = x

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∧ (x ∨ y) = x

In the algebraic approach, we can consider more general algebras than the algebras of propositional
formulae.

In this approach, a natural question is how to solve equations. For instance, it can be shown (exercise)
that the equation in x

(x ∧ b) ∨ (¬x ∧ (a ∨ ¬b)) = 1

has exactly the solution x = b ∧ (¬a ∨ u) where u is arbitrary.

For propositional logic, these three approaches, model theoretic, proof theoretic and algebraic are
equivalent, but they provide very different intuitions.

3

Logic in Computer Science

Model checking

A transition system (or Kripke frame) is a triple (S,R,L) where S is a finite set of states, R(s, t) a binary
relation on S such that

∀s ∃t R(s, t)

and L is a labelling function, so that L s gives a value 0 or 1 to each atom.

A path or behavior or possible run of a program for this transition system is an infinite sequences of
state π = π0, π1, π2, . . . such that R(πn, πn+1) for all n.

To such a path, we can associate a model α of LTL by taking α p n = L πn p and we define π |= ϕ
to mean α |= ϕ. (This is equivalent to the definition presented in the book.)

We define (S,R,L) |= ψ to mean π |= ψ for all path π of (S,R,L).
A model-checker for LTL is an algorithm deciding (S,R,L) |= ψ.

Example of a LTL model-checking problem

It is possible to encode the Hamiltonian Path Problem as a LTL model-checking problem. The Hamil-
tonian Path Problem is the following problem: given a graph (V,G) to decide if there is a way to
enumerate V as a sequence of vertices v1, . . . , vn (where each vertex appears exactly once) and such that
G(v1, v2), . . . , G(vn−1, vn). This is a well-known NP-complete problem.

For this reduction, we introduce the atoms pv for each v in V and define the following transition
system. We take S to be V ∪{b} where b is not in V and add new edges R(v, b) for all v in V and R(b, b),
and R(v, v′) if G(v, v′). We then have

∀s ∃t R(s, t)

The labelling function is defined by taking L b pv = 0 and L v′ pv = 1 if v = v′ and L v′ pv = 0 if v 6= v′.

The following formula ψ is then such that (S,R,L) |= ψ iff the Hamiltonian Path Problem has not a
solution

ψ =
∨
v∈V

(G(¬pv) ∨ F (pv ∧XF (pv)))

Indeed this implies that for any path π, there exists v such that either π does not visit v or π visits v
twice.

1

Logic in Computer Science

CTL: some corrections

For a model M we don’t have that M |= ϕ ↔ ψ is equivalent to M |= ϕ ↔ M |= ψ (exercise: find a
counter-example). What we have is that M |= ϕ ↔ ψ is equivalent to s |= ϕ ↔ s |= ψ for all states of
M .

Similarly to have M |= ϕ→ ψ is the same as having s |= ϕ→ s |= ψ for all states of M which is not
the same (exercise) as M |= ϕ→M |= ψ.

Because of this, we don’t have in general

|= (ϕ→ EXϕ) → (ϕ→ EGϕ)

but what we have is that, if M |= ϕ→ EXϕ then M |= ϕ→ EGϕ

1

	Propositional Logic
	Predicate Logic (Syllogism)
	The Dog Language
	Arithmetic
	Examples

	The Language of Set Theory
	Predicate Logic as a Formal Language (p. 99)
	Vocabularies
	Terms (p. 99)
	Formulas (p. 100)
	Bound ond Free Variables

