
TDA206 - Discrete Optimization
2017-01-16

What is the course about?
Consider a pharmacy company, which produces x boxes of medication. They
want to sell these boxes in order to maximise their profit.

Market price: p = 900− 0.4x
Production cost: c = 100 + 0.6x
Profit: x(p− c) = f(x)

Objective: max
x∈Z

x(800− x)

Given that:
x ≤ 500
x ≥ 0
10 |x

In the general form, we have want to: opt
x∈ψ

f(x), where ψ is the domain, f(x) is

the objective function and we either want to min or max said function. Most
usually, we will consider min, since maxf(x) = −min f(x). We also concern
ourselves with constraints P [x] (predicates or propositions). {x | p ∈ P [x]} is
called the feasible set.

Convex Functions
Wikipeia: In mathematics, a real-valued function defined on an interval is called
convex (or convex downward or concave upward) if the line segment between any
two points on the graph of the function lies above or on the graph, in a Euclidean
space (or more generally a vector space) of at least two dimensions.

∃.x, y : "line betweenx and y" (N , where N is the region.
∀.x, y : line ⊆ N , where N is the region.

In order to figure out if every dot on the line L between x and y is in N ,
we take: λx + (1 − λ)y, where λ ∈ [0, 1]. The interval [0, 1] ensures we only

1

check the line L between x and y.

A set is C ⊆ Rn is convex iff: ∀.x, y ∈ C, λ ∈ [0, 1] : λx+ (1− λ)y ⊆ C

Examples of Convex Sets

Norm Balls
The norm of a vector v, ||v||L. We will mostly be concerned with l2-norms:√
x · x = xTx = xx =< x, x >=

√
x21 + x22 + x23 +

More general: lp = (
∑
i

|xi|p)1/p, and we’re pretty much only concerned with:

l1 =
∑
i

|xi| and l∞.

An l2-ball is a circle on the plane.
An l1-ball is a diamond, inscribed in the l2-ball.
An l∞-ball is a square, surrounding the l2-ball.

Properties of Norms
Positivity: ||x|| ≥ 0
Scalability: ||λx|| = |λ| ||x||
Triangle in-eq (TIQ): ||x+ y|| ≤ ||x||+ ||y||

Def: Norm Ball
{x | ||x|| ≤ R}, where R is some radius.
We want to show that: ||λx+ (1− λ)y|| ≤ R

||λx+ (1− λ)y|| ≤ R
≤ ||λx||+ ||(1− λ)y||
= |λ| ||x||+ |1− λ| ||y||
≤ λR+ (1− λ)R
= (λ+ 1− λ)R = R

Def: Hyperplanes
{~x |~a · ~x = b}

Hyperplanes are all convex sets.

Def: Half spaces
{~x |~a · ~x ≤ b} (also ≥)

2

Convex Functions
One of the simplest convex functions is f(x) = x2. We look at the epigraph of
f. If you draw a line between two points on f we get a line: f(λx+ (1− λ)y) ≤
λf(x) + (1− λ)f(y).

Example - Norm
In order to show that f(x) = ||x|| is a convex function, we must show that:
||λx+(1−λ)y|| ≤ λ||x||+(1−λ)||y||. We can use the same approach as above.
Since λ ∈ [0, 1] we get: λ ||x||+ (1− λ) ||y||.

Example - Alternate way
Given that f(x) is differentiable (you can take a derivative of it), which ever
derivative you take will be below the actual function. We can write this as:
f(y) ≥ f(x) +5f(x)(y − x).

3

https://en.wikipedia.org/wiki/Epigraph_(mathematics)

2017-01-18

Gradient
5f(x) = df(x)

dx

5f(~x) =



∂f
∂x1

∂f
∂x2

.

.
∂f
∂xn


Example
f(x) = 2x31 + 8x22 − x3 + 1
∂f(x)
∂x1

= 6x21
∂f(x)
∂x2

= 16x2
∂f(x)
∂x3

= −1

5f(~x) =

 6x21

16x2

−1


Recap: Convex Function
Criteria for f to be convex:

1. ∀x1, x2 ∈ Rn, λ ∈ [0, 1] : f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)
2. If f is differentiable, all the tangents of f will be below f .
∀x, x0 f(x) ≥ f(x0) +∇f(x0) · (x− x0)

3. If the change of the slope is always increasing.
If f is twice differentiable, then f is convex if ∇2f(x) ≥ 0.

Function: f(x) = x2

Criteria 1:(λx1 + (1− λ)x2)
2 ≤ λx21 + (1− λ)x22

1

(λx1 + (1− λ)x2)
2

= λ2x21 + 2λ(1− λ)x1x2 + (1− λ)2x22 ≤ λx21 + (1− λ)x22
0 ≤ λx21 − λ2x21 − 2λ(1− λ)x1x2 + (1− λ)x22 − (1− λ)2x22
0 ≤ λx21(1− λ)− 2λ(1− λ)x1x2 + (1− λ)x22(1− (1− λ))
0 ≤ λ(1− λ)x21 − λ(1− λ)x1x2 + λ(1− λ)x22
0 ≤ λ(1− λ)(x21 − 2x1x2 + x22)
0 ≤ λ(1− λ)(x1 − x2)2

Criteria 2: x2 ≥ x20 +
dx2

0

dx · (x− x0)

x2 ≥ x20 + 2x0 · (x− x0)
x2 ≥ x20 + 2xx0 − 2x20
x2 − 2xx0 + x20 ≥ 0
(x− x0)2 ≥ 0

Criteria 3: ∇2f(x) ≥ 0

∇2f(x) = ∇2x2 = 2 ≥ 0

Optimization
Wikipedia
An optimization problem is a problem on the form:

opt
x∈ψ

f(x)

s.t. P [x]

Ω ⊆ ψ, the feasible set

Def: A convex opt. problem is one in which:
1. ψ = Rn
2. f(x) is convex
3. Ω is convex

Note: Make sure that your SW either checks 2 and 3, or that you know that
beforehand.

Also, an opt. problem is convex if either:

a) gi(x) ≤ bi and gi is convex

If gi(x) is convex, we’re good, but if gi is not convex, we might be okay if
Ω is convex (a continuous line). You must prove that bi “gives you” a convex Ω.

b) hj(x) = bi and hj is affine

2

https://en.wikipedia.org/wiki/Convex_optimization#Standard_form

Theorem
The family of convex sets is closed under intersection.

If we have to convex sets A and B, and in the intersection between A and
B we have two points x and y. We know that: x, y ∈ A and x, y ∈ B, as well as
LA ⊆ A and LB ⊆ B. Since a line segment between two points in R is unique,
we know that LA = LB = L ⊆ A ∩B.

If we want to define a convex region, without using complex schtuff, we can
use half spaces – which are always convex. Since a half space is always convex,
and an intersection between arbitrary many convex sets is convex, we can al-
ways guarantee a convex feasible region (convex polytope). Using this method
we can create reasonable feasible regions with very few constraints.

3

2017-01-23

Clarification regarding Laplacian and Hessian.

Linear Programming
Generally we would write our optimization problem as:
opt
x∈Rn

f

s.t P [x]

In linear programming we wolud have:
f = cᵀ~x (linear function)
P [x]: aᵀi ~x ≤ bi and dᵀj ~x = e

Our feasible region will be given by the constraints.

Example: Diet Problem
We want to minimize the cost for feeding the army.

min cᵀx = c1x1 + c2x2 + ...+ cnxn

s.t k1x1 + k2x2 + ... ≥ cal

3000 ≥ b1x1 + b2x2 + ... ≥ 800

xi ≥ 0

Add constraints for protein, fat, vitamins, etc...

1

https://en.wikipedia.org/wiki/Stigler_diet
https://en.wikipedia.org/wiki/Hessian_matrix
https://sv.wikipedia.org/wiki/Laplaceoperatorn

Different ways to program linearly
opt
x∈Rn

cᵀx

s.t
~

dᵀi x ≤ bi ⇔ A ~x} ≤ b

aᵀj x ≥ qi

dᵀx = e

This is not unique, we could for insteance multiply d with a constant. There
are various ways of writing this:

1. Standard/augmented form.
2. Canonical form

Standard / Augmented Form

max cᵀx

s.t Dx = e

x ≥ 0

Canonical Form

max cᵀx

s.t Ax ≤ b

x ≥ 0

Go from min → max

You negate the objective function.

Invert the ≥

aix ≥ b → −aix ≤ −b

Std to Can

dix = e → dix ≤ e and dix ≥ e

Unbounded →bounded

x→ x+ − x− = x, x+, x− ≥ 0

Can to Std

aix ≤ bi → aix = bi − zi, zi ≥ 0 ⇒ aix+ zi = bi

2

Duality
max x1 + 2x2 + x3 + x4

s.t. x1 + 2x2 + x3 ≤ 2

x2 + x4 ≤ 1

x1 + 2x3 ≤ 1

x ≥ 0

Some solver claims: x∗ =


1

0.5

0

0.5

, f∗ = 2.5, but how do we verify this?

We have these properties:
a ≤ b ∧ c ≤ d→ a+ c ≤ b+ d
ma ≤ mb ∧ nc ≤ nd→ ma+ nc ≤ mb+ nd

our goal is to find an upper bound on f∗.

1

2
(x1 + 2x2 + x3) ≤

1

2
∗ 2

x2 + x4 ≤ 1

1

2
(x1 + 2x3) ≤

1

2
1

2
x1 +

1

2
x1 + x2 + x2 +

1

2
x3 + x3 + x4 ≤ 2.5

x1 + 2x2 + x3 + x4 ≤ x1 + 2x2 +
3

2
+ x4 ≤ 2.5

yi = factors
y1(a11x1 + a12x2 + a13x13) ≤ y1b1
2(a21x1 + a22x2 + a23x13) ≤ y2b2
y ≥ 0

y1a11x1 + y2a21x1 + y1a12x2 + y2a22x2 + y1a13x3 + y2a23x23 ≤ yᵀb
- make upper bound to cᵀx
- make bound tight

c1x1 + c2x2 + c3x3 ≤ (y1a11 + y2a21)x1 + (y1a12 + y2a22)x2 + (y1a13 + y2a23)x3

This gives us new constraints!

c1 ≤ y1a11 + y2a21

3

c2 ≤ y1a12 + y2a22
c3 ≤ y1a13 + y2a23

We get a new problem:

min yᵀb

s.t. c ≤ yᵀA

y ≥ 0

This is a dual problem of primal.

Primal

If your primal problem is:

max cᵀx

s.t Ax ≤ b

x ≥ 0

then your dual is derived as follows:

cᵀx ≤ yᵀAx ≤ yᵀb

y ≥ 0

so...
cᵀx ≤ (Aᵀy)ᵀx ≤ yᵀb

cᵀ ≤ (Aᵀy)ᵀ

c ≤ Aᵀy

So the dual becomes:

min bᵀy

s.t Aᵀy ≥ c

y ≥ 0

4

2017-01-25

A note on duals
min bᵀy

s.t Aᵀy ≥ c

y ≥ 0

If c ≤ Aᵀy is true, it must be the case that cᵀ ≤ (Aᵀy)ᵀ ⇔ cᵀ ≤ yᵀA. We
also have that Ax ≤ b, hence: for any y ≥ 0, yᵀAx ≤ yᵀb. Looking at our
previous expression we have, for any x ≥ 0: cᵀx ≤ yᵀAx. Combining these we
get: cᵀx ≤ yᵀAx ≤ yᵀb.

Theorem: Weak duality theorem
For a primal linear program P, and its dual D, the following holds: If x is a
feasible solution in P and y is a feasible solution in D, then cᵀx ≤ bᵀy.

Def

bᵀy − cᵀx is called the duality gap.

Theorem: Strong duality theorem
If the primal P has an optimal solution x∗ the dual D has an optimal solution
y∗ s.t. the duality gap cᵀx∗ = bᵀy∗. (I.e. the duality gap is zero.)

Complementary Slackness
Given a primal P and a dual D, we have the following constraints:

D\P x1 ≥ 0 x2 ≥ 0 x3 ≥ 0

y1 ≥ 0 a11 a12 a13 ≤ b1

y2 ≥ 0 a21 a22 a23 ≤ b2

≥ ≥ ≥

min c1 c2 c3

1

https://en.wikipedia.org/wiki/Weak_duality
https://en.wikipedia.org/wiki/Weak_duality

cᵀx∗ = y ∗ᵀ Ax∗ = bᵀy∗
cᵀx∗ = y ∗ᵀ Ax∗
cᵀx ∗ −y ∗ᵀ Ax∗ = 0
(cᵀ − y ∗ᵀ A)x∗ = 0∑
j

(cᵀ − y ∗ᵀ A)j ∗ xj = 0

if xj∗ > 0⇒ (cᵀ − y ∗ᵀ A) = 0.

If a primal variable is non-zero, its corresponding dual constaint is binding/active
(it is equal, not “inequal”). If the dual constraint has slack (6=), then the primal
variable is 0.

The minimum cost flow problem
• We have a set of vertices V.

• Each vertex v ∈ V has a balance b.

• Each arc has a capacity c and a cost (price) p.

• Each arch has a flow x (the actual amount that is pushed through the
arc).

We can describe this as an LP:

min
∑
a
pa × xa

s.t ∀v ∈ V :
∑

xin −
∑

xout = bv

∀a : xa ≤ ca

∀a : xa ≥ 0

2

https://en.wikipedia.org/wiki/Minimum-cost_flow_problem

2017-01-30

Integer Linear Programs
ILPs are LPs with Zn as domain instead of Rn. However, ILPs are not convex
– we cannot draw lines between dots in Z! There is however ways of solving
ILPs.

Solve ILPs using LP
One of them is LP Relaxations. Another way of solving ILPs is to ensure that
all vertices in the LP polytop are integer, then we know that the opitmal solu-
tion x∗ is integer.

We can ensure that each vertex is the intersection of n linearly independent
hyperplanes. In 2D, this means that we need two planes, in R3 we need 3
planes, etc.

Formalizing

Mx = b, we want to make sure that for all integer b, x has an integer solution.

We use Cramer’s Rule, which states that Mi = M with column i replaced
by b and xi = |Mi|

|M | . We can ensure that this holds by making |m| = ±1.

Def:

A matrix M is called unimodular iff |M | = ±1.

Construct a polytope of integer vertices

Given the primal for an LP:
max cᵀx

s.t Ax ≤ b
x ≥ 0

we can rewrite this as:[
A

−ε

]
x ≤

[
b

0

]

1

https://en.wikipedia.org/wiki/Linear_programming_relaxation
https://en.wikipedia.org/wiki/Linear_programming_relaxation

But, this is not the matrix we’re looking for.

S v

[
A

−ε

]
is however the matrix we want.

We know that: S has to be a unimodular matrix. If we make sure that all
invertible sub-matrices are unimodular we know that we get an integer poly-
tope.

Def:

A matrix A is called totally unimodular (tum) iff all invertible sub-matrices
S v A are unimodular. The transpose is also tum. Equivalently: for all square
S, |S| ⊆ {−1, 0, 1}.

Since this must hold for a 1 × 1 matrix, the entries in this matrix can only
be one of {−1, 0, 1}.

Conclusion!

If ILP has tum A→ Feasible region has only integer vertices→ solve LP relation
and xILP ∗ = xLP ∗.

Incidence Matrix
We define a matrix such that:

sv vt st

s 1 0 1

v −1 1 0

t 0 −1 −1

describes a graph where there is an edge (sv) that starts in s and ends in
v.

Max flow problem
Given a flow graph we have some constraints:

volume: xsv − xvt = 0
flow: xij ≤ uij
x ≥ 0

Solve it using ILP
Incidence Matrix:

2

https://en.wikipedia.org/wiki/Incidence_matrix
https://en.wikipedia.org/wiki/Maximum_flow_problem

max cᵀx

s.t 0 ≤ xsv ≤ 3

0 ≤ xvt ≤ 1

0 ≤ xst ≤ 2

0 ≤ xts ≤ ∞ 1 1 0 −1

−1 0 1 0

0 −1 −1 1



xsv

xst

xvt

xts

 =

 0

0

0



εx ≤


3

2

1

∞



The dual variables for

 0

0

0

 is

 Πs

Πv

Πt

 and the dual variables for


3

2

1

∞

 is


αsv

αst

αvt

αvs

,
hence the dual becomes:

min (~0~u) · (~Π~α) = ~uᵀ~α

s.t [AᵀEᵀ]

[
Π

α

]
≥ 0

αts + Πt −Πs ≥ 1
∀ij : αij + Πi −Πj ≥ 0

αts = 0 by complementary slackness. Πt ≥ Πs + 1 = 1.

1. The dual of the max s-t flow ILP is solvable as (0,1)-ILP.
2. Strong integer duality → primal = max flow, dual = min cut. Since the
incident matrix is unimodular, these are the same.

3

2017-02-01

Recap on Integer Polytopes

x axis

y axis

−3x1 − x2 ≤ −20

x1 − x2 ≤ 7

−x2 ≤ −2

2x1 + x2 ≤ 26

x1 + 2x2 ≤ 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8

9

10

11

1

We want to solve:
1 2

2 1

1 −1
0 −1
−3 −1


[

x1

x2

]
≤


25

26

7

−2
−20


ILP Solution to 3-SAT
We want to know if there exist an assignment of x s.t. the 3-SAT is satisfied.
We also want to do this using ILP.

We have the example: (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

max x

s.t xi ∈ Z
xi ≥ 0

xi ≤ 1

x1 + (1− x3) + x4 ≥ 1

x1 − x3 + x4 ≥ 0

.

.

Matching
We have two different kinds of mathings – maximum and maximal. A maximum
matching is “the largest number of edges that meets the constraint”. A maximal
matching is “a matching s.t. adding another edge is impossible”. A maximum
match is a maximum maximal match. We can check a graph’s bi-partiteness
using matching.

We can solve the maximum matching problem using an algorithm for network
flow – using ILP.

ILP for Maximum Matching
note that c = 1

2

https://en.wikipedia.org/wiki/Bipartite_graph#Algorithms
https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definition
https://en.wikipedia.org/wiki/Bipartite_graph#Algorithms

max cᵀx xij edge i− j

s.t ∀i :
∑

j∈δ(i)
xij ≤ 1

∀j :
∑

i∈δ(j)
xij ≤ 1

xij ≥ 0

Let A be a matrix with nods × edges.
Dual:
min y

s.t Aᵀy ≥ 1i
The dual of the maximum matching problem is the vertex cover problem. MMP
∈ P, but VC ∈ NPH!

3

2017-02-20

Königs Theorem
In the mathematical area of graph theory, König’s theorem describes an equiv-
alence between the maximum matching problem and the minimum vertex cover
problem in bipartite graphs.

The maximum matching problem can be expressed as:

max
∑

ye

s.t ∀v ∈ V :
∑

yw ≤ 1
w∈δ(v)

ye ∈ {0, 1}
And the feasible region (for bipartite graphs) (i.e. the polytope) is integer.

Vertex Cover
min

∑
v
xv

s.t ∀e = (v, w) : xv + xw ≥ 1

We know that we can solve the maximum matching by its LP-relaxation. For
bipartite graphs, the equivalence between vertex cover and maximum matching
described by König’s theorem allows the bipartite vertex cover problem to be
solved in polynomial time.

In bipartite graphs the size of the maximum matching equals the size of the
minimum vertex cover, by strong LP-duality.

If we’re not using bipartite graphs it can get a bit nastier. This is because the
incidence matrix is not TUM. In general graphs, Vertex Cover is NP − hard.

Heuristics

Naïve Way
Given a graph we take the node with the highest degree and choose it. We
procede until we cover all edges.

1

https://en.wikipedia.org/wiki/K%C5%91nig's_theorem_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_cover

cost(v) :=
∑

w∈δ(v)

1
deg(v)

We know that we started of with m edges, for each iteration we know that we
have at least m−j+1 edges left Where j is the edge covered in the kth iteration.
That can be covered using≤ |opt| nodes. In the pidgeon lemma, we havem−j+1
pidgeons left. There always exist an edge ∃v s.t. d(v) ≥ ceil(m−j+1

|opt|) ≥ m−j+1
|opt| .

This implies that at iteration k the cost of edge ej is ≤ |opt|
m−j+1 .

Hence, the total cost:
∑
e
cost(e) ≤ |opt|

∑
e

1
m−e+1 = Hm|opt| =

m∑
i=1

1
i |opt|.

Hm ∈ Θ(log m) ∈ O(log(n²)) = O(2log(n)) = O(log(n))

Dual Way
Given a linear program primal that is a minimization problem we get a dual lp
that is a maximization problem.

If our min problem has a optimum solution x we know that the optimal so-
lution for the dual is also x. However, looking at the R-line the dual’s feasible
solutions are < x and for the primal the feasible solutions are > x.

The primal ILP opt solution will be a solution “a little bit worse” than x. Since
we want to minimize, it will be a solution larger than x. Analogly the ILP opt
dual is a solution less than x.

In the Vertex Cover

Vertex cover is an ILP. We have some opt solution x∗. If we want a lower bound
for x∗ we can take any feasible solution to the dual. This is the case for any
minimization problem!

This leads us to an unintutive, but good, aproximation heuristics!

By creating any matching, we have a lower bound for x∗. We pick an arbi-
trary edge e, the vertices that are connected by e (u and v) are added to the
solution set. We remove all edges incident to u and v and do the same thing
repeat until we have a solution to the matching.

We maintained feasability in the dual, but not in the primal. However, the
final solution is feasible in the primal!

Primal Dual Method
1. Start Algorithm

2

2. Acquire a feasible dual solution y

3. Find primal solution x that minimizes violation of complementary slack-
ness

4. Is complementary slackness satisfied for all constraints?

(a) If yes: we have an opt LP solution.

(b) If no: Find a new feasible dual solution y, with better objective value.
We then go back to Finding a new x.... (3)

3

2017-02-22

Original Primal-Dual Method for Linear Programs
Starting with a feasible dual solution y, we take this y and attempt at finding a
feasible primal solution x that satisfies complementary slackness. If we find such
a solution we know that y and x are optimal! If we do not have complementary
slackness, we change y in order to improve the dual objective.

Recap of Complementary Slackness:

Strong duality states that if x∗ and y∗ are optimal solutions to an LP. Then it
is the case that: cᵀx∗ = y∗Ax∗ = bᵀy∗.

From this it follows that we have complementary slackness if:

1. For the primal complementary slackness: xj > 0→
∑
i

aijyi = cj

2. For the dual complemantary slackness: yi > 0→
∑
j

aijxj = b

Setup
Given a primal and a dual:

min cᵀx

s.t Ax ≥ b
x ≥ 0

max bᵀy

s.t Aᵀy ≤ c
y ≥ 0

We define the sets I := {i | yi = 0}, containing all the tight dual variables,
and J := {j |

∑
i

aijyij = cj}, containing all the binding dual constraints.

What we do next?
We have no gotten ourselves a new LP.

1

min
∑
i∈IC

si +
∑
j∈J C

xj

s.t x ≥ 0

s ≥ 0

i ∈ I :
∑
j

aijxj ≥ bi

i ∈ IC :
∑
j

aijxj − si = bi

Note that IC is the complement of I.

If the solution to the above problem is 0, we have found a y such that com-
plementary slackness is fullfilled!

Why do we even?!
We have gone from solving the primal to potentially solving a bunch of linear
programs. We have however gotten rid of the original c in the primal. The
original problem is a weighted LP, but we have replaced it by an LP that does
not have a cost associated with it.

Restricted Dual
Given the LP above, we have the primal variables x and s. We know that both
x and s ≥ 0. x is split into two sets (J and J C). The cost vector therefore
becomes c = (0 ... 0, 1 ... 1, 1 1). Due to complementary slackness for
J . Due to the sets I and IC we also split the b vector into being equal or
“greater than, equal”. The Is and xs makes out the A matrix. The part of s
corresponding to ≥ b is 0, but the part corresponding to = b is the negative
identity matrix (E, for einz). The upper left part gives us: 0 ≥ y, the lower left
gives us a free y which alligns with I and IC .

The Revival – Primal-Dual for approximation
• Enforce the primal complementary slackness

• Relax the dual complementary slackness

What does it mean to relax complementary slackness?

Relaxed PCS: xj > 0→
∑
j

aijyi ≥ cj
α , we are binding cj

α ≤
∑
aijyi ≤ cj .

Relaxed DCS: yi > 0→
∑
j

aijxj ≤ βbi

α, β ≥ 1

We now get the bound: bᵀy ≤ cᵀx ≤ αβbᵀy, where αβ is the approximation
factor.

2

Back to the Vertex Cover
Given the node-edge incidence matrix A (columns = nodes, rows = edges) we
must have at least one 1 per row, and atmost one 1 per column.

min
∑
v
xv

s.t xv + xw ≥ 1 (v, w) ∈ E

We also have the dual:

max
∑
ye

s.t
∑
ye ≤ 1

We know want to enforce the PCS by enforcing
∑
ye = 1 in the dual. We

then have our β = 2 = xv + xw ≥ 1.

3

2017-02-27

Branch and Bound
We have the following setting:

• The optimization over the feasible region Ω is hard.

• The bounds on f∗ are easy.

Our approach is to split Ω into two subsets: Ω1 and Ω2. We know have four
bounds instead of two (lΩ1

, uΩ1
and the same for Ω2). We can check which

bound yields the best result. We compare uΩ1
, lΩ2

. If uΩ1
< lΩ2

. We can
throw away Ω2 since even the lowest value in Ω2 was worse than the largest
one in Ω1. If uΩ1 � lΩ2we cannot really say anything, hence we must continue
searching.

Algorithm for minimization using BB
• We start with some feasible solution x∗

• f∗ is set to ∞

• f∗
u is also set to the value given by f(x∗)

• A ={Ω}

• While |A| > 0

– Ω = pop(A)

– (fu, xu)= upperBound(Ω)

– (fl, xl) = lowerBound(Ω)

– f∗
u = min(f∗

u , fu)

– if fl ≤ f∗
u

∗ if xl is feasible and fl < f∗

· f∗ = fl
· x∗ = xl

∗ else
· partition Ω into Ω1, Ω2, ...
· add Ωi to A

• Return (f∗, x∗)

1

https://en.wikipedia.org/wiki/Branch_and_bound

Bounds for minimizing ILP
Upper Bound:

A primal feasible x for the ILP

Lower Bonds:
The x∗ from the LP-relaxation
A dual feasible x (LP or ILP)

Travelling Salesman Problem
Given a graph G = (V,E) where all e ∈ E have nonnegative cost ce, we want
to find the least costly Hamiltonian Path (round tour which visits each vertex
exactly ones). (Euler Path: Round tour that visits all edges exactly once.)

Euler Tour
We can find the tour (if it exists) in polynomial time.

Hamilton Cycle
The existance of HP in a graph is NP − hard.

Lower Bound

We can easily find the lower bound of the problem by calculating the cost of the
MST of the graph. c(MST) ≤ c(H∗\e) ≤ c(H∗).

Complete Metric TSP

If we try to solve the Metric TSP we get a little bit easier problem.

MST Heuristcs

Given a graph G = (V,E), we:

1. Find an MST.

2. Start on any node and traverse the graph s.t. you walk on every edge
twice. This costs 2× c(MST). This is not a hamiltonian cycle but it is a
cycle.

3. Redo the MST walk. At some occasion you cannot “go back”, because this
would result in a double tap on a vertex. Then you go to the vertex you
would have gone too “after the next vertex”.

Due to the triangle in-equality (in the metric version of the problem) we know
that what we just did is at most as expensive as the MST − walk. It is not
generally the case that the triangle in-equality holds!

2

https://en.wikipedia.org/wiki/Eulerian_path
https://en.wikipedia.org/wiki/Hamiltonian_path
https://en.wikipedia.org/wiki/Travelling_salesman_problem#Metric_TSP

2017-03-01

Branch and Bound – Example
We start with a feasible region Ω. We can calculate a lower bound for the prob-
lem and we find it to be 2. A feasible solution tells us a upper bound is 100.

We now split Ω into two parts: Ω1, Ω2. We get new bounds: 2–91, 30–70.

We split Ω1 into two parts: Ω11, Ω12 and get: 80–90, 40–60. Our best up-
per bound this far is 60, so we know that the other set Ω11 (where the lower
bound is 80) must not contain the solution! Cut it off.

We repeat this until we can no longer split Ωi.

Euclidian TSP
Until recently the Christofieds Heuristics was the state of the art heuristics. The
Christofides’ algorithm follows a similar outline to the MST approach but com-
bines the minimum spanning tree with a solution of another problem, minimum-
weight perfect matching. This gives a TSP tour which is at most 1.5 times the
optimal.

Algorithm

1. Find a minimum spanning tree for the problem

2. Create a matching for the problem with the set of cities of odd order.

3. Find an Eulerian tour for this graph

4. Convert to TSP using shortcuts.

This is a 3/2-approximation for Eucledian MST.

General TSP
Can we approximate the general TSP?

1

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Euclidean_TSP
https://en.wikipedia.org/wiki/Travelling_salesman_problem#Christofides.27_algorithm_for_the_TSP

Unless P = NP there exists no α-approximation to TSP for any constant α.
This – likely – means that there is no polynomial way of approximate this
within reasonable bounds of the TSP.

Proof
Includes Hamiltonian Cycles and Euler Tours. The former is NPH even in the
decision problem and the latter is P.

Given an unweighted graph G = (V,E), we create another graph G′ = (V ′, E′)
with the following properties:

• if some edge e ∈ E → c(e′) ∈ E′ = 1

• if some edge e /∈ E → add an edge e′ to E′ and let c(e′) = αn, where α is
some constant and n = |V |.

If we say that we have an algorithm that can give us a hamiltonian cycle of cost
< αn in polynomial time for any (weighted) graph, we have two scenarios we
need to look at:

1. If our original graph contain a hamiltonian cycle the weight of that cycle
will be n, since we have one edge per node. This means that in the second
graph we would not have to pick any αn edge.

2. We now have a weighted problem. If we have no hamiltonian cycle in G
we must pick at least one αn edge in G′. Since at least one edge in our
solution costs αn we could not live up to what we claimed.

ILP for TSP
We need to ensure that:

• All edges are connected. (The resulting graph is connected.)

• Each vertex in the original graph is in the solution. (Each vertex is visited
at least once.)

• Each vertex is visited at most one (apart from the first vertex).

• The first vertex is also the last vertex.

This sums up to:

• Degree constraint:

– deg(vi) = 2

• Sub-tour elimination:

– avoid “too short trips”

2

min cᵀx

s.t ∀v :
∑

e∈δ(v)
xe = 2

x ∈ B

NOT DONE!! See next week’s notes.

Ω is “all the round trips” aka. all hamiltonian cycles.

3

2017-03-06

Recap of last weeks min
We have a minimisation problem from last class:

min cᵀx

s.t ∀v ∈ V :
∑

e∈δ(v)
xe = 2

x ∈ B

This is missing a way to eliminate cycles of node sets that are not the en-
teire set. We introduce a subtour elimination constraint stating that:

Inner SEC: ∀
(
∅ ⊂ S ⊂ V

)
:

∑
e=(u,w)u,w∈S

xe ≤ |S| − 1

Outer SEC: ∅ ⊂ S ⊂ V :
∑

e∈δ(S) v∈S
xe ≥ 2

Lagrange Relaxation
min cᵀx

s.t Ax ≤ b
The constraint above is violated if Ax − b > 0. If we add that term to the
objective function, we can create:

min cᵀx+ λᵀ(Ax− b)
s.t λ > 0

These things are called “lagrangian multipliers”.

1

https://en.wikipedia.org/wiki/Lagrangian_relaxation

1-Tree bound
? ≤ c(H∗) = c(e) + c(f) + c(P)

where c(e) + c(f) = A and c(P) = B

A = 2 cheapest edges incident to v1.
B = MST on V \{v1}

Held-Karp Bound
One of the problems with the MST is that we are not constrained to the nodes
having degree 2. The idea with HKB is that we change the weights s.t. the tree
is closer to being a path.

Objective: Change all cycle costs by the same constant amount, while changing
MST to something that is path-like.

Idea: Add a cost to each node.

Problem: We have a problem working with edge costs.

Solution: Add the “node cost” for each node to its incident edges instead. Mean-
ing that: c(e)→ λv + λw + c(e).

This changes the objective value, but our solution (as in what edges to walk
on) will NOT change. We can use this to “punish” certain edges.

Lagrangian Relaxation

We lagrange relax all nodes but v1:
∑
xe = 2

min cᵀx−
∑
v
λv(

∑
e∈δ(v)

xe − 2) = min cᵀx−
∑
v
λv

∑
e∈δ(v)

xe + 2
∑
v
λv =

min
∑
e
(ce − λu − λv)xe whereas this is the MST on V \{v1}, aka the HKB aka

the lagrangian relaxation.

Cutting Plane Method
Solve the relaxation. Cut inbetween that solution and the optimal solution.
Repeat until we either get the optimal solution or a good bound.

2

http://mat.gsia.cmu.edu/classes/mstc/relax/node5.html
https://en.wikipedia.org/wiki/Cutting-plane_method
https://en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm

We want to solve:

min cᵀx

s.t Ax ≤ b
→

min cᵀx

s.t Ax ≤ bbc
→

find λ s.t. λᵀAx ∈ Z→ λᵀAx ≤ bλᵀbc

Our goal: Solv LP-relaxation of TSP without too many constraints.

Approach

• We start without any SECs.

• Find a min cut with a weight of less than 2. This implies that we violated
an outer SEC.

– We do this using the max flow/min cut theorem.

3

