Wednesday, LV 1 (2016-08-31)

September 13, 2016

1 Info

"Problems" are problems in the sence of algorithmical problems, not exercises one should "do".

Hand in exercises will be given weekly, these are voluntary but strongly recommended. (The first hand in exercise is due Wed. 2016-09-07.)

Exercise sessions will be given and they will be concentrated on exercises from the textbook. All three slots given are identica l and you are asked to sign up on a doodle to spread the attendence.

2 Problem

An instance is a concrete input of logic.
Given: x,y (integers)
Compute: $\mathrm{x}+\mathrm{y}$ and $\mathrm{x} * \mathrm{y}$
Which is the easier operation?
Most people would probably say additon, but in what sense is that?

3 Algorithm

- An instruction: How to solve a problem (it must work for all instances of a problem).
- Unambiguous
- The work is split into small, simple, steps.

Myth One might think that developing algorithms is programming, but this is wrong. An algorithm is not a program.

4 Time Complexity

Time complexity is the limiting factor of algorithms. You can also think about the space required, but the time limit is harder, hence we will concentrate on time complexity.

The time complexity of an algorithm is its running time for every instance. $\mathrm{t}: \mathrm{X} \rightarrow \mathrm{R}^{+}$(where X is a set of instances). However, this is far to complicated.

4.1 Worst case analysis: $\mathcal{O}(n)$

$\mathrm{t}: \mathbb{N} \rightarrow \mathbb{R}^{+}$
maximum running time for instances of length n . The "time" is not counted in seconds, but in elementary operations. We also ignore constant factors.

Definition Let t and f be two functions:, then t is $\mathcal{O}(f)$ if: $\exists c>0, n_{0}: \forall n>$ $n_{0}: t(n) \leq c * f(n)$

4.1.1 Examples

x, y : integers with n digits.
We can compute $\mathbf{x}+\mathbf{y}$ in $\mathcal{O}(n)$ time. (We need constant time to add two digits and we do this n times.) The reason is that the result depends on every digit in the input. Unlike a binary search of a sorted array, which we can search in $\mathcal{O}(\log (n))$ time. (More about this later I guess.)

We can add \mathbf{m} integers with \mathbf{n} digits in $\mathcal{O}(m n)$, but this is hard to prove! Note that the result of adding a column could be as bad as $9^{*} \mathrm{~m}$. This carry over constant has $\mathcal{O}(\log (m))$ digits, so in the worst case scenario we get an addition of $\mathcal{O}(\log (m))$ operations mer digit we want to calculate. This would yield: $\mathcal{O}(m n * \log (m))$.

We can compute $\mathrm{x}^{*} \mathrm{y}$ in $\mathcal{O}\left(n^{2}\right)$ time. This is not optimal, due to the digits not being completely independent of each other when multiplying. (Take a look at Big-O Arithmetics in general and Fürers Algorithm in particular.)

4.2 Properties of \mathcal{O}

- $\mathcal{O}(f(n)+g(n))$ is the same as $\mathcal{O}(\max \{f(n), g(n)\})$.
- If: f monotone increasing function, $\mathrm{c}>0$ (constant), $\mathrm{a}>1$ (constant) \Rightarrow $f(n)^{c}$ is $\mathcal{O}\left(a^{f(n)}\right)$
- $\mathcal{O}\left(\log _{a} n\right)=\mathcal{O}\left(\log _{b} n\right)$ because they differ only by a constant factor.

Monday, LV 2 (2016-09-05)

1 Interval Scheduling

Given a set of n intervals $\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right], \mathrm{i}=1, \ldots, \mathrm{n}$, on the real axis. Select a subset X of these intervals, as many as possible, which are pairwise disjoint.

An exhaustive solution (check everything) would take $\mathcal{O}\left(n * 2^{n}\right)$ time.
However, if we put a certain interval $\mathrm{x}=\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right]$ in X , we can remove all intervals intersecting with x .

1.1 Attempt 1

Put $\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right]$ with smallest s_{i} in X .
This might seem reasonable, but it is a bad attempt. Visualize a very long interval $[1,8]$ and two shorter $[2,3],[4,5]$, we immediatley see that it is better to choose the two shorter intervals, but our rule would fail to do this. Attempt 1 does not take into account, the length of the intervals.

1.2 Attempt 2

Put $\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right]$ with smallest $\mathrm{f}_{i}-\mathrm{s}_{i}$ in X .
Visualize $[1,5],[4,7],[6,10]$ and you will see that we should have picked the two longer intervals. However, we picked the shortest - and only the shortest interval.

1.3 Attempt 3

Put $\left[s_{i}, f_{i}\right]$ in X which intersects the smallest number of intervals. (See P 117, Fig 4.1 in the book for counter example.)

1.4 Attempt 4 (Earliest End First, EEF)

Sort the intervals s.t. $\mathrm{f}_{1}<\mathrm{f}_{2}<\ldots<\mathrm{f}_{n}$. Put $\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right]$ with smallest f_{i} in X . Then remove all intervals intersecting with x . Iterate.

1.4.1 Claim

There exists some optimal solution, Y , containing $\left[\mathrm{s}_{1}, \mathrm{f}_{1}\right]=\mathrm{x}$.
Claim \Rightarrow EEF correct. This is because, after picking the first interval (and therefore removing its intersecting intervals), picking the next interval is simply a matter of applying the rule one more time, and so on. Proof by induction!

1.4.2 Proof of Claim

Assume: Y is optimal, $x \notin \mathrm{Y}$.
x's f_{i} is somewhere within the interval y's $\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right]$.
x intersects exactly one $y \in Y$.
$(\mathrm{Y} \backslash\{\mathrm{y}\}) \cup\{\mathrm{x}\}$ is another optimal solution.
QED.

1.5 EEF Running time

EEF runs in $\mathcal{O}\left(n^{2}\right)$ time. We can however make it faster by:

- Represent each interval by two copies.
- Put them into two double linked lists.
- One of the lists is sorted by ascending f_{i}.
- The other list is sorted by ascending s_{i}.
- Connect copies by pointers. (If you find an interval in one list, you find it in the other too.)
- Find smallest f_{i} in constant time (heap?).
- Intersecting intervals $\left[\mathrm{s}_{j}, \mathrm{f}_{j}\right]$ are those with $\mathrm{s}_{j}<\mathrm{f}_{i}$.

This leads us to using $\mathcal{O}(n)$ time in total for the EEF. We do however also need to sort the list. This could be done in $\mathcal{O}(n * \log (n))$, but we would just say: $\mathcal{O}(n)+$ Time(sorting).

2 Interval partitioning

Given a set of n intervals $\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right], \mathrm{i}=1, \ldots, \mathrm{n}$, on the real axis. Partition the set of intervals into the smallest possible number d of subsets $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{d}$, each consisting of pairwise disjoint intervals.

2.1 Algorithm

Sort the intervals such that $\mathrm{s}_{1}<\mathrm{s}_{2}<\ldots<\mathrm{s}_{n}$.
for all i: $\mathrm{X}_{i}=\emptyset$
for all $\mathrm{j}=1$ to n
put $\left[\mathrm{s}_{j}, \mathrm{f}_{j}\right]$ in X_{i} where i is the smallest index s.t. $\left[\mathrm{s}_{j}, \mathrm{f}_{j}\right]$ does not intersect other results in X_{i}.

2.2 Proof

$\mathrm{d}:=\max$ number of intervals that share a point.
Every solution requiers at least d sets $\mathrm{X}_{i}=\emptyset$.
The algorithm uses only d sets (graphical proof, see Page 123 in the book).

Wednesday, LV 2 (2016-09-07)

1 Weigthed Interval Scheduling

Given: a set of n intervals $\left[\mathrm{s}_{i}, \mathrm{f}_{i}\right], \mathrm{i}=1, \ldots, \mathrm{n}$, on the real axis. Every interval has also a positive weight v_{i}. The intervals are sorted such that the interval that ends first comes first. No intervals end, or start, at the same time.
Goal: Select a subset X of these intervals which are pairwise disjoint and have maximum total weight.

1.1 EEF Fails

The algorithm we showed in the previous lecture will not be able to solve this issue. AAMOF the interval scheduling problem is a special case of the weigthed interval scheduling problem. (I.e. where v_{i} is the same for all intervals.) Hence, the WIS is a harder problem to solve. In order to show that the EEF fails we can look at two intervals: $\mathrm{n}_{1}=[1,3,1]$ and $\mathrm{n}_{2}=[2,4,10]$ where $\mathrm{n}_{i}=[$ start, stop, weigth]. We see that it is not beneficial to pick n_{1}, but EEF would do so since n_{1} ends before n_{2}.

1.2 Discard the worse solutions

$\operatorname{OPT}(\mathrm{j}):=$ max weight achievable by a subset of disjoint intervals from $\left\{\left[\mathrm{s}_{1}, \mathrm{f}_{1}\right]\right.$, $\left.\left[\mathrm{s}_{2}, \mathrm{f}_{2}\right], \ldots,\left[\mathrm{s}_{j}, \mathrm{f}_{j}\right]\right\}$.

In the end we want only $\operatorname{OPT}(\mathrm{n})$, but we will use $\operatorname{OPT}(\mathrm{j})$ to get there.
We can conclude that: $\mathrm{OPT}(1)<=\mathrm{OPT}(2)<=\ldots<=\mathrm{OPT}(\mathrm{n})$.

1.2.1 Computing $\operatorname{OPT}(\mathbf{j})$

The key is to use induction on j .

Induction base: $\quad \operatorname{OPT}(1)=\mathrm{v}_{1}$

Induction step: Consider any fixed $\mathbf{j}>1$. Suppose that all $\mathrm{OPT}(\mathrm{i}), \mathrm{i}<\mathrm{j}$ are already computed.
$\operatorname{OPT}(\mathrm{j})=\max \begin{cases}O P T(j-1) & \text { don't take }\left[s_{j}, f_{j}\right] \\ v_{j}+O P T(p(j)) & \text { take }\left[s_{j}, f_{j}\right]\end{cases}$
where $\mathrm{p}(\mathrm{j}):=\max \left\{\mathrm{i} \mid \mathrm{f}_{i}<\mathrm{s}_{j}\right\} \quad$ (auxiliary function)

1.2.2 Time Complexity

We can compute:

- all $\mathrm{p}(\mathrm{j})$ in $\mathcal{O}(n)$ time (if all $\mathrm{f}_{i}, \mathrm{~s}_{j}$ are sorted)
- all $\operatorname{OPT}(\mathrm{j})$ in $\mathcal{O}(n)$ time (arithmetic operations with real numbers are counted as elementary)

This table uses the schedule shown in the book. (P 253, Fig 6.2)

$$
\begin{array}{c|cccccc}
\mathrm{j} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \mathrm{OPT}(\mathrm{j}) & 2 & 4 & 6 & 7 & 8 & 8
\end{array}
$$

1.2.3 Note about recursion

The formula used is recursive, however that can be dangerous to use (see P 255 , Fig 6.3). The tree of subproblems gets really big... This is because we recalculate $\operatorname{OPT}(\mathrm{j})$ for many js. If we store $\operatorname{OPT}(\mathbf{j})$ in an array at position $M[j]$ we can look there and see if there is already a value for $\operatorname{OPT}(\mathrm{j})$ before we (re-)calculate it.

1.2.4 What about the subset?

When we have obtained OPT(n) we know what the opitmal value will be. However, we have not kept track of which subset is optimal. Lets take that into account.

We can store all the intermediate solutions as shown below:

j	1	2	3	4	5	6
OPT(j)	2	4	6	7	8	8
Subset:	$\{1\}$	$\{2\}$	$\{1,3\}$	$\{4\}$	$\{1,3,5\}$	$\{1,3,5\}$

Note that it takes a lot of time. Storing intermediate solutions $=>\mathcal{O}\left(n^{2}\right)$ time. Oh, oh..

We try another way and ask: "Where did the optimum come from?" The misstake in the previous way of calculating the subset was that we went from
left to right. If we go from right instead...
We ask: Where did 8 come from? 5 or $\mathrm{p}(6)$? It came from 5 . Hence, we can discard 6. We continue and get: (this is hard to write, check the book)

j	1	2	3	4	5	6
OPT(j)	2	4	6	7	8	8
Subset:	pick	discard	pick	discard	pick	discard

Backtracing in order to find the solutions $=>\mathcal{O}(n)$ time!

1.3 Dynamic Programming

One scheme fits all!

1. Choose parameters that limit the sub-instances (to a polynomial number).
2. Define a recursive function which indicates the opitmal value of the subinstances. Be careful to define what the function is supposed to compute.
3. Compute the function without using recursive calls. (Instead, store the values in an array and check if you have already computed the value.)
4. Do a time analysis. (This should usually be $:=$ (size of table)x(time spent on table entry $)=($ size $) x($ constant $)$.)
5. Get the actual solution by backtracing, starting from the final value. Do not copy all the partial solutions!

Note: You only need to prove the correctness for the recursive function. The correctness of the method is given by the method itself.

Monday, LV 3 (2016-09-12)

1 The Knapsack Problem

Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.
weights(sizes): $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots$
values: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$
capacity W: (integers)
Find $\mathrm{S} \subseteq\{1, \ldots, \mathrm{n}\}$ s.t. $\sum_{i \in S} w_{i} \leq W$ and $\max \sum_{i \in S} v_{i}$.
j

1.1 Possible Greedy Solution

Sort items s.t. $\frac{v_{1}}{w_{1}} \geq \frac{v_{2}}{w_{2}} \geq \ldots \geq \frac{v_{n}}{w_{n}}$.
Take items it this order, put them in the solution as long as possible.
It turns out this is a pretty bad idea...
Let $\mathrm{v}_{1}=10 \varepsilon, \mathrm{v}_{2}=90, \mathrm{w}_{1}=\varepsilon, \mathrm{w}_{2}=10, \mathrm{~W}=10$

1.2 Subset Sum (A partial Solution)

Given a set (or multiset) of integers, is there a non-empty subset whose sum is W ?
$\mathrm{P}(\mathrm{j}, \mathrm{w}):=1$ if some subset of $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{n}\right\}$ has sum w .
$\mathrm{P}(\mathrm{j}, \mathrm{w}):=0$ otherwise.
Computing the $\mathbf{P}(\mathbf{j}, \mathrm{w})$
if $j=0$, we take something from the empty set (w is therefore also 0):
$\forall \mathrm{w}>0: \mathrm{P}(0, \mathrm{w})=0$
$\forall \mathrm{j}: \mathrm{P}(\mathrm{j}, 0)=1$
Induction step
Suppose we have already computed $\mathrm{P}(\mathrm{i}, \mathrm{y})$ for all $\mathrm{i}<\mathrm{j}, \mathrm{y}<\mathrm{w}$. $\mathrm{P}(\mathrm{j}, \mathrm{w})=\mathrm{P}(\mathrm{j}-1, \mathrm{w}) \vee \mathrm{P}\left(\mathrm{j}-1, \mathrm{w}-\mathrm{w}_{j}\right) \quad \mathrm{P}=\left(\right.$ don't take \vee take $\left.w_{j}\right)$

1.2.1 Time Complexity

The algorithm runs in: $\mathcal{O}(n * W)$, which is not polynomial. In the worst case it could be exponential in the input length. We say that the algorithm is pseudopolynomial.

1.2.2 Example Run

$\mathrm{w}_{1}=1, \mathrm{w}_{2}=1, \mathrm{w}_{3}=5, \mathrm{w}_{4}=2, \mathrm{w}_{5}=2$
$\mathrm{W}=8$

$\mathrm{w} \backslash \mathrm{j}$	0	1	2	3	4	5
0	1	1	1	1	1	1
1	0	1	$\mathbf{1}$	1	1	.
2	0	0	1	1	1	.
3	0	0	0	0	1	.
4	0	0	0	0	1	.
5	0	0	0	1	1	.
6	0	0	0	$\mathbf{1}$	1	.
7	0	0	0	1	1	.
8	0	0	0	0	$\mathbf{1}$.

Back tracing: $(4,8)->(3,6)->(2,1)$

1.3 Subset Sum 2.0

Find a subset of $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{n}\right\}$ whose sum is as big as possible, but less than W. (If we have a knapsack problem where $\mathrm{v}_{i}=\mathrm{w}_{i}$, this is it.)
$\operatorname{OPT}(\mathrm{j}, \mathrm{w})$: The largest number $\leq \mathrm{w}$, which is the sum of some subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{j}\right\}$.
$\operatorname{OPT}(\mathrm{j}, \mathrm{w})=\max \left\{\begin{array}{l}O P T(j-1, w) \\ w_{j}+O P T\left(j-1, w-w_{j}\right)\end{array}\right.$

1.4 Back To Knapsack

$\operatorname{OPT}(\mathrm{j}, \mathrm{w})$: The largest value of a subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{j}\right\}$ with weigth $\leq \mathrm{W}$.
$\operatorname{OPT}(0, \mathrm{w})=\operatorname{OPT}(\mathrm{j}, 0)=0$
$\operatorname{OPT}\left(\mathrm{j}-1, \mathrm{w}-\mathrm{w}_{j}\right)=0$ if $\mathrm{w}<\mathrm{w}_{j}$
$\operatorname{OPT}(\mathrm{j}, \mathrm{w})=\max \left\{\begin{array}{l}O P T(j-1, w) \\ \boldsymbol{v}_{\boldsymbol{j}}+O P T\left(j-1, w-w_{j}\right)\end{array}\right.$

2 Sequence Comparison

Given: Two strings $\mathrm{A}=\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}$ and $\mathrm{B}=\mathrm{b}_{1}, \ldots, \mathrm{~b}_{m}$, where the $\mathrm{a}_{i}, \mathrm{~b}_{j}$ are characters from a fixed, finite alphabet.

Goal: Transform A into B by a minimum number of edit steps. An edit step is to insert or delete a character, or to replace a character with another one.

2.1 Example: CREAMY <-> CARAMEL

C - R E A M Y -
C A R - A MEL
We have 4 miss matches.
CREAM-Y
C A R A MEL

Have 4 miss matches too. (And there are at least two additional solutions with 4 miss matches.)

2.2 Algorithm

$\mathrm{A}=\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}$ and $\mathrm{B}=\mathrm{b}_{1}, \ldots, \mathrm{~b}_{m}$.
Align a prefix of the first word, with a prefix of the second word.

$\operatorname{OPT}(\mathrm{i}, \mathrm{j}):=\mathrm{min}$ number of miss matches in an alignment of $\mathrm{a}_{1}, \ldots, \mathrm{a}_{i}$ and $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{j}$. We want to acquire $\operatorname{OPT}(\mathrm{n}, \mathrm{m})$.

2.3 Problem Analysis (and correctness proof)

What can happen to a_{i} ?

- It disappears, and $\mathrm{a}_{1}, \ldots, \mathrm{a}_{i-1}$ is alligned with $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{j}$.
- $\mathrm{a}_{1}, \ldots, \mathrm{a}_{i}$ is alligned with $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{j}$ (in particular $\mathrm{a}_{i}->\mathrm{b}_{j}$).
- and a_{i} is alligned with $a b_{k}$ that is somwhere between b_{1} and b_{j}.

2.4 Recursive formula

$\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\min \left\{\begin{array}{l}O P T(i-1, j)+1 \\ O P T(i-1, j-1)+\delta_{i j} \\ O P T(i, j-1)+1\end{array} \quad\right.$ where $\delta= \begin{cases}1 & a_{i} \neq b_{j} \\ 0 & \text { otherwise }\end{cases}$
$\min \begin{cases}\downarrow & +1 \\ \searrow & +\delta_{i j} \\ \rightarrow & +1\end{cases}$

2.4.1 Example

		C		R		E	
A		M		Y			
	0	1	2	3	4	5	6
C	1	$\mathbf{0}$	1	2	3	4	5
A	2	$\uparrow 1$	$\nwarrow 1$	2	$\mathbf{2}$	3	4
R	3	2	$\nwarrow \mathbf{1}$	$\leftarrow \nwarrow 2$	3	3	4
A	4	3	2	2	$\nwarrow \mathbf{2}$	3	4
M	5	4	3	3	3	$\nwarrow \mathbf{2}$	3
E	6	5	4	$\mathbf{3}$	4	$\uparrow 3$	$\nwarrow 3$
L	7	6	5	4	4	4	$\nwarrow \uparrow 4$

2.5 Time Complexity

$\mathcal{O}(n m)$

Wednesday, LV 3 (2016-09-14)

1 Segmentation

Given: A sequence ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$) of items.
Goal: Partition the sequence into segments $\left(\mathrm{x}_{i}, \ldots, \mathrm{x}_{j}\right)$ so that the sum of $\mathrm{f}\left(\left(\mathrm{x}_{i}\right.\right.$, $\left.\ldots, \mathrm{x}_{j}\right)$) of all these segments are maximized/minimized.

Let $\mathrm{e}_{i j}$ describe the penalty, or the quality score, for the sequence (x_{i}, \ldots, x_{j}). Find a segmentation that minimizes the sum of penalties or maximizes the quality score.

1.1 OPT

Assume that we have already decided a segmentation: \square
$\mathrm{OPT}(\mathrm{j}):=$ minimun sum of penalties of all possible segmentations of $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{j}\right)$.
$\operatorname{OPT}(\mathrm{j})=\min \left\{\mathrm{e}_{i j}+\operatorname{OPT}(\mathrm{i}-1)\right\} \quad($ Note: $\mathrm{i} \leq \mathrm{j})$

1.2 Time Complexity

$\mathcal{O}\left(n^{2}\right)$, if the $\mathrm{e}_{i j}$ are already given.

1.3 Alternative Algorithm (for maximize version only)

This is very similar to the weighted interval scheduling problem.
Consider ($\mathrm{x}_{i}, \ldots, \mathrm{x}_{j}$) as an interval with weigth $\mathrm{e}_{i j}$. Solve this instance of weigthed interval scheduling. The process of reducing a problem to another problem is called "reduction".

Recall that the running time of WIS is $\mathcal{O}(n)$, however n is the number of intervals - in our segmentation problem we have n^{2} possible intervals, hence the running time is still $\mathcal{O}\left(n^{2}\right)$.

2 Searching - Divide and Conquer

The art of dividing a set into subsets, and solving them recursively.
Given: A sorted set $\mathrm{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}\right\}$
Goal: Find x , if x is present in S .
Example, binary search:

```
search(i,j) :
    if i = j:
        return i (x is located at S[i])
    else:
        m=(i+j)/2
        if x <= S[m]:
            search(i,m)
        else:
                search (m+1,j)
```

Comparison and arithmetic operations take constant time. Each iteration we half our n, hence: $\mathcal{O}(\log (n))$.

2.1 General running time of recursive DNC algorithms Recurrence Equations

$\mathrm{T}(\mathrm{n}):=$ time for instances of lengt n . Even though we know nothing about $\mathrm{T}(\mathrm{n})$ we can look at the algorithm above and see that:
$\mathrm{T}(\mathrm{n})=\mathrm{T}\left(\frac{n}{2}\right)+\mathcal{O}(1)$
$\mathrm{T}(1)=\mathcal{O}(1)$ (induction base)
It is also enough to consider n as powers of 2 . This is because the definition of \mathcal{O}. Consider: $(b n)^{d}=b^{d} n^{d}=\mathcal{O}\left(n^{d}\right)$
$\mathrm{T}(\mathrm{n})=\mathcal{O}(\log (n))$

3 Skyline

Given: n rectangles, having their bottom lines on a fixed horizontal line.
Goal: Output the area covered by all these rectangles (in other words: their union), or just its upper contour.

Instance: Described by $\left(l_{i}, \mathrm{r}_{i}, \mathrm{~h}_{i}\right), \mathrm{i}=1, \ldots, \mathrm{n}(\mathrm{l}$ is the left x -value, r is the right x -value and h is the height of the rectangle)

Output: Described by the sequence of heights and points on the x -axis where the height changes.

Approach 1: Insert rectangles one by one and update the skyline. It takes us $\mathcal{O}(j)$ time to insert the jth rectangle leading us to a total runtime of $\mathcal{O}\left(n^{2}\right)$. $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathcal{O}(n)$.

The first approach is bad because we spend a lot of time in order to insert only one new rectangle. We could use this time more efficiently using Divide and Conqure.

Approach 2:

1. Divide the instance arbitrarily in two instances with $\frac{n}{2}$ rectangles.
2. Compute their skylines recursively.
3. Merge these skylines in linear time.
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}\left(\frac{n}{2}\right)+\mathcal{O}(n)=\mathcal{O}(n \log (n))$

4 Solving recurrence equations (Master Theorem)

Let: a and b be integers, $\mathrm{a} \geq 1, \mathrm{~b} \geq 2$.
Let: c and k be reals, $\mathrm{c}>0, \mathrm{k} \geq 0$.
Consider $\mathrm{n}=\mathrm{b}^{m}$
$\mathrm{T}(1)=\mathrm{c}$
$\mathrm{T}(\mathrm{n})=\mathrm{aT}\left(\frac{n}{b}\right)+\mathrm{cn}^{k}$
$\mathrm{T}(\mathrm{n})=\mathrm{a}^{2 *} \mathrm{~T}\left(\frac{n}{b^{2}}\right)+\mathrm{ca}\left(\frac{n}{b}\right)^{k}+\mathrm{cn}^{k}$
$\mathrm{T}(\mathrm{n})=\mathrm{a}^{3 *} \mathrm{~T}\left(\frac{n}{b^{3}}\right)+\operatorname{ca}^{2}\left(\frac{n}{b^{2}}\right)^{k}+\mathrm{ca}\left(\frac{n}{b}\right)^{k}+\mathrm{cn}^{k}$
$\mathrm{T}(\mathrm{n})=\mathrm{c} \sum_{i=0}^{m} a^{(m-i)}\left(\frac{n}{b^{(m-i)}}\right)^{k}$
Note: $\mathrm{a}^{(m-i)}\left(\frac{n}{b^{(m-i)}}\right)^{k}=\mathrm{a}^{(m-i)} b^{i k}=\mathrm{a}^{m}\left(\frac{b^{k}}{a}\right)$
$\mathrm{T}(\mathrm{n})=\mathrm{ca}^{m} \sum_{i=0}^{m}\left(\frac{b^{k}}{a}\right)^{i}$
$\mathrm{a}>\mathrm{b}^{k}: \mathrm{T}(\mathrm{n})=\mathcal{O}\left(a^{m}\right)=\mathcal{O}\left(a^{\log _{b} n}\right)=\mathcal{O}\left(n^{\log _{b} a}\right)$
The base of the log is important due to being in the exponant.
$\underline{\mathrm{a}=\mathrm{b}^{k}}: \mathrm{T}(\mathrm{n})=\left(\mathrm{ma}^{m}\right)=\mathcal{O}\left(n^{\log _{b} a} * \log n\right)=\mathcal{O}\left(n^{k} \log n\right)$
$\underline{\mathrm{a}<\mathrm{b}^{k}}: \mathrm{T}(\mathrm{n})=\mathcal{O}\left(a^{m}\left(\frac{b^{k}}{a}\right)^{m}\right)=\mathcal{O}\left(b^{k m}\right)=\mathcal{O}\left(n^{k}\right)$

Algorithms: Lecture 6

Chalmers University of Technology

Recap

- Greedy \& Dynamic Programming
> extend solutions from smaller sub-instances incrementally to larger subinstances, up to the full instance.
- Divide \& Conquer
$>$ follows the pattern of reducing a given problem to smaller instances of itself BUT
>it makes jumps rather than incremental steps.

Recap

- Divide-and-conquer

- Split problem instance into a few significantly smaller sub-instances.
- Sub-instances are solved, independently, in the same way (recursion).
- Combine partial solutions to sub-instances into an overall solution.
- Most common usage
- Break up problem instance of size n into two equal parts of size $1 / 2 n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Today's Lecture

- Important technique for Searching \& Sorting
- Binary Search O(log n) (last lecture)
- Brute force Sorting, e.g., Bubble sort: O(n^{2}).
- Divide-and-conquer: $O(n \log n)$.

Bubble Sort

- Scan the list of elements from left to right
$>$ whenever two neighbored elements are in the wrong order, swap them.

0	1	2	3	4	5	6	7	8
23	17	5	90	12	44	38	84	77

$\uparrow \uparrow$ exchange

17	5	23	12	44	38	84	77	90

The largest value 90 is at the end of the list.

Bubble Sort

54	26	93	17	77	31	44	55	20	Exchange
26	54	93	17	77	31	44	55	20	No Exchange
26	54	93	17	77	31	44	55	20	Exchange
26	54	17	93	77	31	44	55	20	Exchange
26	54	17	77	93	31	44	55	20	Exchange
26	54	17	77	31	93	44	55	20	Exchange
26	54	17	77	31	44	93	55	20	Exchange
26	54	17	77	31	44	55	93	20	Exchange
26	54	17	77	31	44	55	20	93	93 in place

Bubble Sort

- In place: Needs only one array of size n for everything, except, possibly a few memory units.
- Best: In the first pass, if we don't have to make any swaps, that means that the array is sorted already.
- Worst: if many elements are far from their proper places(reverse order), because the algorithm moves them only step by step.
$>$ Insertion Sort to overcome

Insertion Sort

26	54	93	17	77	31	44	55	20

| 26 | 54 | 93 | 17 | 77 | 31 | 44 | 55 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad inserted 93

| 17 | 26 | 54 | 93 | 77 | 31 | 44 | 55 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | search for the correct position, using binary search.

$$
>O(n \log n) ?
$$

$>$ we may be forced to move $\mathrm{O}(\mathrm{k})$ elements in the k-th round, giving again an overall time complexity of $O\left(n^{2}\right)$.

Insertion Sort

- Idea: We can avoid moving the elements
$>$ Insert an element in O(1) time at a desired position using doubly linked list.
- But, how do we apply Binary Search without indices?
$>$ We have to apply linear search, and once again: $O\left(n^{2}\right)$ for all n rounds.
- However, O(n log n) sorting algorithms are known, as we already know
>Divide-and-conquer

Mergesort

- How it works:

- arbitrary split the set into two halves
- recursively sort the two halves separately
- merge the two sorted halves
- Merging the two sorted halves involves comparing the elements to each other
$>$ scan both ordered sequences simultaneously and always move the currently smallest element to the next position in the result sequence, implies $\mathbf{O}(\mathrm{n})$

Mergesort Example

Time Complexity for Mergesort

Recurrence Relation:

- Let $T(n)$ be worst case time on a sequence of n elements
- If $n=1$, then $T(n)=O(1)$ (constant)
- If $n>1$, then $T(n)=2 T(n / 2)+O(n)$
- two sub-problems of size $n / 2$ each that are solved recursively
- $O(n)$ time to do the merge
- Solving the recurrence gives $T(n)=O(n \log n)$
- Remember general result from the Master Theorem
$>\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{cn}^{\mathrm{k}}$, and for $\mathrm{a}=\mathrm{b}^{\mathrm{k}}$ it gives $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}} \log \mathrm{n}\right)$
$>$ For Mergesort, we have $\mathrm{a}=\mathbf{2}, \mathrm{b}=2$ and $\mathrm{k}=1$.

Caveat

- Simple Structure but not the fastest sorting algorithm in practice
- Too many copy operations (In every merging phase on every recursion level we have to move all elements of the merged subsets into a new array.)
- NOT in place
- Additional memory required, while n could be very large in practice.
- Other alternatives with $\mathrm{O}(\mathrm{n}$ log n) time
- Different hidden constants factors
- Hard to analyze theoretically
- runtime experiments can figure out what is really faster.
- Remark: our Skyline algorithm from the previous lecture implicitly uses Mergesort to sort all endpoints of the rectangles.

Quicksort

- How it works:
- choose one element to be the pivot/splitter, called p
- put all the elements $<p$, and those $>p$ in two different subsets
- recursively sort the two subsets and concatenate putting p in between
- In place
- Conquer phase trivial
- Implementation of Divide makes quick sort - quick

| 54 | 26 | 93 | 17 | 77 | 31 | 44 | 55 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 54 will be the |
| :---: |
| first pivot value |

quicksort left half

quicksort right half
 split point found

Time Complexity for Quicksort

- Worst case: the splitter is always the minimum or maximum element of the set, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ is needed.
- Only careful selection of the splitter can guarantee the better bound.
- If the splitters would exactly halve the sets on every recursion level, we have our standard recursion:

$$
>T(n)=2 T(n / 2)+O(n)
$$

$>$ With solution: $T(n)=O(n \log n)$

Ideal Splitter for Quicksort

- Rank of an element: the position of this element if the set were already sorted.
- Median: Element with rank n/2

\square
- Computing Median?
- Sort and read off the element of rank $\mathrm{n} / 2$
- Stupid idea... sorting is the actual problem for which we need to find out Median.
- A splitter is selected at random!
- the worst case (rank nearly 1 or n) is very unlikely.
- The splitters will mostly have ranks in the middle.
$>$ reasonably balanced partitions in two sets.
$>\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time is needed on expectation.
- In practice, chose three random elements and take their median as the splitter.

Center of a Point Set on the Line

Given: n points x_{1}, \ldots, x_{n} on the real line.
Goal: Compute a point x so that the sum of distances to all given points $\sum_{i=1}^{n}\left|x-x_{i}\right|$ is minimized.
Distance: Walking or driving distance along the street, not the Euclidean distance.

Median of the given coordinates, not the average.

Selection and Median Finding

- Given: A set of n elements, where an order relation is defined, and an integer k.
- Goal: Output the element of rank k, that is, the kth smallest element.
- Median: Special case in Selection problem, $\mathbf{k}:=\mathrm{n} / \mathbf{2}$
$>$ often better suited as a "typical" value than the average, because it is robust against outliers.
- Wealth in a population
>Mean vs. Median

Algorithm for Selection and Median Finding

- Choose: a random splitter s and compare all elements to s in $O(n)$ time to get rank r of s.
- Decide:
- If $r>k$ then throw out s and all elements larger than s. REPEAT
- If $r<k$ then throw out s and all elements smaller than s, and set $k:=k-r$ REPEAT
- If $r=k$ then return s. STOP
- Time Complexity
- Given the splitters are always in the middle: $T(n)=T(n / 2)+O(n)$
$>T(n)=a T(n / b)+c n^{k}$, and for $a<b^{k}$ it gives $O\left(n^{k}\right)$
$>$ We have $\mathrm{a}=1, \mathrm{~b}=2$ and $\mathrm{k}=1$, therefore we get: $O(\mathrm{n})$
$>O(n)$ is expected time, worst case could still be $O\left(n^{2}\right)$
$>$ Fast Algorithm: Intuition is that Selection needs much less information than Sorting.

Algorithm for Selection and Median Finding

- A deterministic divide-and-conquer, with $O(n)$ time exists
$>$ Complicated
$>$ More importantly, the hidden constant in $O(n)$ is large
$>$ Practically, random splitter algorithm is better

Information Flow and Optimal Time Bounds

- One of our primary goals is to make algorithms as fast as possible. >How good are our time bounds for sorting and searching algorithms?
- Searching:
- Find a specific element in an ordered set of size n
- Comparisons counted as the elementary operations
- Binary Search: $\log _{2} \mathrm{n}$ comparisons of elements
- Claim: No other algorithm with comparisons as elementary operations can have a better worst-case bound.
$>$ Claim holds due to the information-theoretic argument

Information Flow and Optimal Time Bounds

- Binary Search: $\log _{2} \mathrm{n}$ comparisons of elements
- Claim: No other algorithm with comparisons as elementary operations can have a better worst-case bound.
$>$ Claim holds due to the information-theoretic argument
- How much information do we gain from our elementary operation?
$>$ Binary Answer ("smaller" or "larger"), splitting the set of possible results in two subsets for which either of the answers is true.
$>$ worst case: the answer is true for the larger subset, always
$>$ candidate solutions are reduced by a factor at most 2
$>\mathrm{n}$ possible solutions in the beginning, any algorithm needs at least $\log _{2} \mathrm{n}$ comparisons in the worst case.
- such arguments are used to define the lower bound on the execution of a computation based on the rate at which information can be accumulated.

Information Flow and Optimal Time Bounds

- Sorting: We have $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$ algorithms.
- Claim: No other algorithm with comparisons as elementary operations can have a better worst-case bound.
- The n elements can be ordered in n ! possible ways, and only one of them is the correct order
- Claim holds due to a similar reasoning as for Searching
$>$ Any sorting algorithm can be forced to use $\log _{2} n$! comparisons
$>$ Calculation shows that $\log _{2} n$! is $n \log _{2} n$ subject to a constant factor

$$
\log _{2} n!=\sum_{k=1}^{n} \log _{2} k \geq(n / 2) \log _{2}(n / 2)
$$

Information Flow and Optimal Time Bounds

- Selection Problem: O(n)
- Reasoning for Searching does not apply here
- O $\left(\log _{2} n\right)$ would be a very poor lower bound
- $O(n)$ is optimal
- No order known before hand, ALL the n elements needs to be read
- Every change in the instance can change the result

Information Flow and Optimal Time Bounds

- Faster Algorithms for special cases:
- Bucket Sort: O(m + n)
$>n$ elements come from a fixed range of m different numbers.
- $O(n)$ sorting in lexicographic order
- Words defined over a fixed alphabet
- Total length of the given words: n
- Do these two results contradict?
- NO!
- ?
- Because...

Algorithms: Lecture 7
 Chalmers University of Technology

Today's Lecture

Divide \& Conquer
Counting Inversions
Closest Pair of Points
Multiplication of large integers
Intro to the forthcoming problems
Graphs: Basic Definitions, Applications and Interesting Problems

Counting Inversions

- 5 inversions

Given: a sequence (a_{1}, \ldots, a_{n}) of elements where an order relation < is defined. Goal: Count the inversions in this sequence.

An inversion is a pair of elements where $i<j$ but $a_{i}>a_{j}$.
Find inversions in ($2,4,1,3,5$)
Assume there is a sequence $(1,2,3, \ldots, n)$, thus the given sequence is a permutation of it.

What is it:
"degree of unsortedness" of a given sequence.
"Dissimilarity" of two sequences containing the same elements but in different order.

Counting Inversions

RANKING:

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

Songs

Brute force is Trivial: check all $O\left(n^{2}\right)$ pairs i and j.

Due to the vague similarity with Sorting, Divide-and-conquer should be applicable

- split the sequence into two equal halves, A and B.
- recursively count inversions in both \mathbf{A} and \mathbf{B} separately.
- count inversions between A and B, and return sum of the three quantities.

1	5	4	8	10	2	6	9	12	11	3	7		
1	5	4	8	10	2	6	9	12	11	3	7		5 blue-blue inversions
:---													
9 blue-green inversions													
$5-3,4-3,8-6,8-3,8-7,10-6,10-9,10-3,10-7$													

$$
\text { Total }=5+8+9=22 .
$$

- $T(n)=2 T(n / 2)+?$
- Need to replace? with $O(n)$ to make it better than the Brute Force.
- Sorting the sequence while counting inversions?
- Can this help? OR Stupid idea as in Median Finding?
- Sorting AND Counting Inversions Simultaneously... Does it sound good?
- Challenge: merge two sorted sequences A and B, and simultaneously count the inversions between A and B, still everything in $O(n)$ time

Counting Inversions: Merge and Count

Counting $\mathbf{A}-\mathbf{B}$ inversions

- Assume both A and B are sorted.
- Proceed as in the Mergesort
- While merging whenever the next element copied into the merged sequence is from B, this element has inversions with exactly those elements of \boldsymbol{A} not visited yet.

13 blue-green inversions: $6+3+2+2+0+0$

```
2
```

$T(n)=2 T(n / 2)+O(n)$ implies $O(n \log n)$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
. Combine two sorted halves into sorted whole.

\square auxiliary array

Total:

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2
auxiliary array

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2
auxiliary array

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

23
auxiliary array

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

23
auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$\begin{array}{lll}2 & 3 & 7\end{array}$
auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
. Combine two sorted halves into sorted whole.

$\begin{array}{lll}2 & 3 & 7\end{array}$
auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
. Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: 6 + 3
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: 6 + 3
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: \(6+3\)
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: \(6+3\)
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: 6 + 3 + 2
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: 6 + 3 + 2
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

Total: $6+3+2+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
. Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

Total: $6+3+2+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

$$
\text { Total: } 6+3+2+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
. Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

```
Total: \(6+3+2+2\)
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
```

auxiliary array

$$
\text { Total: } 6+3+2+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
2
auxiliary array
```

Total: $6+3+2+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
. Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
. Combine two sorted halves into sorted whole.

Closest Pair of Points

Closest Pair of Points

Given: Set of n points given as Cartesian coordinates in the plane
Goal: Find a pair of points with minimum distance.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Brute force: Check all pairs of points p and q with $O\left(n^{2}\right)$ comparisons.

Our aim: Using Divide and Conquer, $T(n)=2 T(n / 2)+O(n)$ to get to $O(n \log n)$

Closest Pair of Points

How it works:
Draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
Points sorted by their x-coordinate \longleftarrow Why sorting? find median directly in $O(n)$ Take the median z of all x-values and put all points with coordinate $x<z$ and $x>z$, respectively in two sets, S_{1} and S_{2}
Compute the closest pairs in both S_{1} and S_{2} recursively.

Closest Pair of Points

How it works:
Draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
Points sorted by their x-coordinate \longleftarrow Why sorting? find median directly in $O(n)$ Take the median z of all x-values and put all points with coordinate $x<z$ and $x>z$, respectively in two sets, S_{1} and S_{2}
Compute the closest pairs in both S_{1} and S_{2} recursively.

Closest Pair of Points

How it works:
Draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
Points sorted by their x-coordinate \longleftarrow Why sorting? find median directly in $O(n)$ Take the median z of all x-values and put all points with coordinate $x<z$ and $x\rangle z$, respectively in two sets, S_{1} and S_{2}
Compute the closest pairs in both S_{1} and S_{2} recursively.
Compute closest pairs where one point is in S_{1} while the other in S_{2} ???

Closest Pair of Points

Let d_{1} be the distance between the closest pair in S_{1} Similarly d_{2} for the set S_{2} $d:=\min \left(d_{1}, d_{2}\right)$

Closest Pair of Points

Find closest pair with one point in S_{1} while the other in S_{2}
Because we already have closest pair with distance d
The candidates for such pairs of points are in a stripe of breadth d on both sides of the separating line L
Consider the pairs with one point in each set, assuming that distance < d.

Closest Pair of Points

Find closest pair with one point in S_{1} while the other in S_{2}
Sort points in 2d-strip by their y coordinate.
Only check distances of those within 11 positions in sorted list! (d is 12)
Managed everything in $O(n)$ for the conquer step.
Finally, standard recurrence $T(n)=2 T(n / 2)+O(n)$ with solution $O(n \log n)$

Multiplication of large integers

2095067093034680994318596846868779409766717133476767930
X 5920175091777634709677679342929097012308956679993010921

9715480283945084383094856701043643845790217965702956767

+ 1242431098234099057329075097179898430928779579277597977

Multiplication of large integers

a, b are both n-digit integers
If we use the brute-force approach to compute $c=a * b$, what is the time efficiermos

Remember the "School Algorithm"

$5678 \cdot 4321$
22712000
01703400
00113560
00005678
24534638

Divide and Conquer: Can we do better?
Split the decimal representations of the factors a and b into two halves, and to multiply, use the distributive law.
3×6
$=3 \times(2+4)$
$=3 \times 2+3 \times 4$

Multiplication of large integers

$$
\begin{aligned}
a & =a_{1} a_{0} \text { and } b=b_{1} b_{0} \\
c & =a^{*} b \\
& =\left(a_{1} 10^{n / 2}+a_{0}\right) *\left(b_{1} 10^{n / 2}+b_{0}\right) \\
& =\left(a_{1} * b_{1}\right) 10^{n}+\left(a_{1} * b_{0}+a_{0} * b_{1}\right) 10^{n / 2}+\left(a_{0} * b_{0}\right)
\end{aligned}
$$

For instance: $a=123456, b=117933$:
Then $c=a * b=\left(123^{*} 10^{3}+456\right)^{\star}\left(117^{*} 10^{3}+933\right)$

$$
=(123 * 117) 10^{6}+(123 * 933+456 * 117) 10^{3}+(456 * 933)
$$

What we achieve:

multiplication of n-digit numbers is reduced to:
several multiplications of $n / 2$-digit numbers and some additions

In fact: we need 4 multiplications involving a_{1}, a_{0}, b_{1}, and b_{0}
Multiplications with 10^{n} and $10^{n / 2}$ are trivial: Append the required number of $0 s$.

Multiplication of large integers

$$
\begin{aligned}
a & =a_{1} a_{0} \text { and } b=b_{1} b_{0} \\
c & =a^{*} b \\
& =\left(a_{1} 10^{n / 2}+a_{0}\right) *\left(b_{1} 10^{n / 2}+b_{0}\right) \\
& =\left(a_{1} * b_{1}\right) 10^{n}+\left(a_{1} * b_{0}+a_{0} * b_{1}\right) 10^{n / 2}+\left(a_{0} * b_{0}\right)
\end{aligned}
$$

Solve by recursive application of the above:

At every recursion step: problem reduces to 4 recursive calls AND addition
Clearly: $T(n)=4 T(n / 2)+O(n)$,
$a=4, b=2, k=1$. Master Theorem implies: $T(n)=O\left(n^{\log _{2} 4}\right)=O\left(n^{2}\right)$
Still same like Brute Force... we need to avoid 4 recursive calls at each level

Multiplication of large integers

$$
\begin{aligned}
a & =a_{1} a_{0} \text { and } b=b_{1} b_{0} \\
c & =a^{*} b \\
& =\left(a_{1} 10^{n / 2}+a_{0}\right) *\left(b_{1} 10^{n / 2}+b_{0}\right) \\
& =\left(a_{1} * b_{1}\right) 10^{n}+\left(a_{1} * b_{0}+a_{0} * b_{1}\right) 10^{n / 2}+\left(a_{0} * b_{0}\right)
\end{aligned}
$$

Can we achieve?

multiplication of n-digit numbers by three multiplications of $n / 2$-digit numbers $+O(n)$
<presenting the idea using the rectangle example>

Multiplication of large integers

$$
\begin{aligned}
& a=a_{1} a_{0} \text { and } b=b_{1} b_{0} \\
& c=a^{*} b
\end{aligned}
$$

We are aiming at:
$c=c_{2} 10^{n}+c_{1} 10^{n / 2}+c_{0}$, where computing each of c_{2}, c_{1} and c_{0} requires ONE multiplication
This is achievable as follows:

$$
\begin{aligned}
c & =\left(a_{1} * b_{1}\right) 10^{n}+\left(a_{1} * b_{0}+a_{0} * b_{1}\right) 10^{n / 2}+\left(a_{0} * b_{0}\right) \\
& =c_{2} 10^{n}+c_{1} 10^{n / 2}+c_{0} .
\end{aligned}
$$

where
$c_{2}=a_{1}{ }^{*} b_{1}$ is the product of their first halves
$c_{0}=a_{0} * b_{0}$ is the product of their second halves
$c_{1}=\left(a_{1}+a_{0}\right)^{*}\left(b_{1}+b_{0}\right)-\left(c_{2}+c_{0}\right)$ is the product of the sum of the a's halves and the sum of the b's halves minus the sum of c_{2} and c_{0}.

Multiplication of large integers

Finally
$c=c_{2} 10^{n}+c_{1} 10^{n / 2}+c_{0}$,
where
$c_{2}=a_{1}{ }^{*} b_{1}$
$c_{0}=a_{0} * b_{0}$
$c_{1}=\left(a_{1}+a_{0}\right) *\left(b_{1}+b_{0}\right)-\left(c_{2}+c_{0}\right)$
Clearly: $T(n)=3 T(n / 2)+O(n)$,
$a=3, b=2, k=1$. Master Theorem implies: $T(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.59}\right)$ far better than $O\left(n^{2}\right)$
Caution: Factors $\left(a_{1}+a_{0}\right)$ and $\left(b_{1}+b_{0}\right)$ may have $(n / 2)+1$ digits
Split off the first digit and have recursive calls of ($n / 2$)
Can only cause $O(n)$ extra work, won't affect the time bound
Acceleration takes effect only for rather large n (more than some 100 digits)
Recursive calls being the overhead

Graphs

Basic Definitions, Applications and Interesting Problems

Graphs

Graph. $G=(V, E)$

- $V=$ nodes.
- $E=$ edges between pairs of nodes.
- Captures binary relationships between objects (nodes).
- Symmetric relationships: G is undirected, all edges (u, v) are unordered: (u, v) and (v, u) are identical
- Asymmetric relationships: G is directed, All edges (u, v) are ordered: (u, v) and (v, u) are different
- Graph size parameters: $n=|V|, m=|E|$.
- A node and an edge are incident if the edge contains this node.
- Two vertices(nodes) joined by an edge are called adjacent.

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8\} \\
& E=\{1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6\} \\
& n=8 \\
& m=11
\end{aligned}
$$

Some Graph Applications

Graph	Nodes	Edges
transportation	street intersections	highways
communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
social	people	relationships
food web	species	predator-prey
software systems	functions	function calls
scheduling	tasks	precedence constraints
circuits	gates	wires

World Wide Web

Web graph.

- Node: web page.
- Edge: hyperlink from one page to another.

Social network

Social network graph.

- Node: people.
- Edge: relationship between two people.

Ecological Food Web

Food web graph.

- Node $=$ species.
- Edge = from prey to predator. (victim to killer)

Adjacency matrix. n-by-n matrix with $A_{u v}=1$ if (u, v) is an edge, 0 otherwise

- Two representations of each edge.
- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $O(1)$ time.
- Identifying all edges takes $O\left(n^{2}\right)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	1	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency Lis \dagger

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to $m+n$.

```
degree = number of incident edges
```

- Checking if (u, v) is an edge takes $O(\operatorname{deg}(u))$ time.
- Identifying all edges takes $O(m+n)$ time.
- In most graph algorithms, adjacency lists are preferable, as they do not waste space for non-edges.
- Nodes in Directed graphs:
d in-degree: the number of incoming edges
\& out-degree: the number of outgoing edges.

Given: An Undirected Graph G.

Goal: Find a clique of maximum size.
\dagger
a subset K of nodes such that there is an edge between any two nodes in K

Motivation: The graph models an interaction network (persons in a social network, proteins in a living cell, etc.), where an edge means some close relation between two "nodes".
We may wish to identify big groups of pairwise interacting "nodes".

Given: An Undirected Graph G.
Goal: Find and independent set of maximum size.

```
    subset of nodes such that no two joined by an edge
```

Motivation: The graph models conflicts between items, and we wish to select as many as possible items conflict-free.

Given: An Undirected Graph G.
Goal: Find a vertex cover of minimum size.
a subset of nodes such that every edge of G has at least one of its two nodes in it

Motivation: How can we place a minimum number of guards in a museum building so that they can watch all corridors?

Graph Problems: Difficulty

How difficult is to solve these Graph problems (some hints):
Maximal Clique: Find a clique of maximum size.

\uparrow

a subset K of nodes such that there is an edge between any two nodes in K
$k=2$ is trivial (every pair of adjacent nodes)
But, we need to consider all possible k.
Furthermore, for every k, we need to check all k-subsets of nodes.
In other words, we need to check all possible 2^{n} subsets of the node set n could be very large...
This 2^{n} is not special here, same applies to e.g., Interval Scheduling..
The difference is... Our Algorithm Design Approaches seem to fail here...
Next Week: Going to be hard...
for whom...?
Of course for these problems.
However, to fight against a hard opponent, we need to work hard!

Monday, LV 5 (2016-09-26)

1 Multiplying by Squaring

Given an integer a with n digits, we want to square a .
Given two integers a and b (each with n digits), we want to multiply $\mathrm{a}^{*} \mathrm{~b}$.

We can reduce one problem to the other.
Suppose we have an algorithm that can square integers in some time $\mathcal{O}((n))$. S $=$ polynomial, $\mathcal{S}(n) \geq n$.

Using the squaring algorithm we compute: $a b=\left((a+b)^{2}-(a-b)^{2}\right) * \frac{1}{4}$. All operations except squaring runs in linear time (at worst, to divide by 4 in binary is constant).

Now we can multiply two arbitrary integers in: $\mathcal{O}(\mathcal{S}(n))$.

1.1 Is squaring easier than multiplication?

Squaring is obviously a special case of multiplication, hence is there a super good algorithm for squaring that we can use instead of using multiplication?

Nope.

2 Two uses of reduction

1. Solve a problem X with help of an existing algorithm for a problem Y .
2. Prove that problem X is at least as hard as problem Y .

3 Definition of Reduction

X, Y: problems
$|x|$: length of an instance x, for the problem X
If "X is reducable to Y in $\mathcal{O}(t(n))$ time", we can transform every instance of the first problem ($\mathrm{x},|\mathrm{x}|=\mathrm{n}$) into an instance of the second problem, $\mathrm{y}=\mathrm{f}(\mathrm{x})$ of Y .

We may then transform a solution of y back to a solution of x . All of this, in $\mathcal{O}(t(n))$ time.

3.1 Flowchart

Assume Y solvable in $\mathcal{O}(u(n))$ time.

- x (an instance of X) is transformed into an instance of the second problem (done by the reduction) $\mathrm{y}=\mathrm{f}(\mathrm{x})$. This takes $t(n)$ time.
- We now solve our second problem, and get the solution of y. This step takes $u(t(n))$ time.
- Transform the solution of y back into a solution of x . This step takes $t(n)$ time.
- All in all, it takes $t(n)+u(t(n))$ time.

If Y is an easy problem, and the reduction is fast, X is also an easy problem. However, if X is hard, Y is hard.

4 Optimization Vs Decision

What's the difference?

4.1 Optimization

Given an instance x , find a solution with minimum/maximum value.

4.2 Decision

Given an instance x and a number k , does x posess a solution with value $\left\{\grave{\sum}\right\}$ k?

4.2.1 Reducability for decision problems

X, Y: decision problems
$|\mathrm{x}|$: length of instance x of X

X is reducable to Y in $\mathcal{O}(t(n))$ time. This means that we can transform every x into an instance $\mathrm{y}=\mathrm{f}(\mathrm{x})$ of Y s.t: x and y gives the same answer. I.e. x answers Yes $\Leftrightarrow \mathrm{y}$ answers Yes. Note also that f is computable in $\mathcal{O}(t(n))$ time.

X is reducable to Y in polynomial time. This is as above, but t is polynomial. (Denoted by $\mathrm{X} \leq_{p} \mathrm{Y}$.)

5 Graph Problems

$\mathrm{G}=(\mathrm{V}, \mathrm{E}),|\mathrm{V}|=\mathrm{n}$
Clique $\leq{ }_{p}$ Indep. Set
All cliques in a graph G is exactly the independent sets in the same graph. One can reduce clique to independt set as: Does G contain a clique of size k being equivalent to asking if G has an independent set of k nodes. $\mathrm{f}(\bar{G}, \mathrm{k})=$ (G, k).

Indep Set \leq_{p} Clique
In the same way we can reduce independent set to clique: $\mathrm{f}(G, \mathrm{k})=(\bar{G}, \mathrm{k})$.
If we have vertex cover in some graph: $\mathrm{U} \subseteq \mathrm{V}$ vertex cover $\Leftrightarrow \mathrm{V} \backslash \mathrm{U}$ indep. set.

Vertex Cover \leq_{p} Indep Set

$\mathrm{f}(\mathrm{G}, \mathrm{k})=(\mathrm{G}, \mathrm{n}-\mathrm{k})$
We can also do: Indep Set \leq_{p} Vertex Cover.

6 Generic Reductions

Suppose X is a "special case" of Y, like squaring is a special of multiplication and interval scheduling of weighted interval scheduling. Then it is the case that $\mathrm{X} \leq_{p} \mathrm{Y}($ via $\mathrm{f}(\mathrm{x})=\mathrm{x})$.

6.1 Interval scheduling \leq_{p} Independent Set

Given four intervals: $[1,5],[2,6],[3,8],[7,9]$ we want to see if we can find a subset of k pairwise disjoint intervals we can draw a graph where each interval is a vertex and each interval that intersects another interval has an edge between its nodes.

The reverse is however not trivial. Ptr cannot show this. :(Can it even be done? Think of a "circle graph", the fifth interval must intersects only the first and last intervals - cannot be done.

6.2 Transitivity

If $\mathrm{X} \leq_{p} \mathrm{Y} \wedge \mathrm{Y} \leq_{p} \mathrm{Z} \Rightarrow \mathrm{X} \leq_{p} \mathrm{Z}$
Proof:
$\mathrm{X} \xrightarrow{f} \mathrm{Y} \xrightarrow{g} \mathrm{Z}$
f is computable in time $p(n)$
g is computable in time $q(n)$
p, q are polynomial in time
$\mathrm{X} \leq{ }_{p} \mathrm{Z}$ via $\mathrm{h}=\mathrm{g} \circ \mathrm{f}:$

$$
\mathrm{x} \text { is Yes } \Leftrightarrow \mathrm{f}(\mathrm{x}) \text { is Yes } \Leftrightarrow \mathrm{g}(\mathrm{f}(\mathrm{x})) \text { is Yes }
$$

h is computable in $p(n)+q(p(n))$ which is polynomial.

7 NP or P?

7.1 Polynomial Time: \mathcal{P}

\mathcal{P} : class of decision problems that can be solved by an algorith that runs in polynomial time.

If $\mathrm{X} \leq_{p} \mathrm{Y} \wedge \mathrm{Y} \in \mathcal{P} \Rightarrow \mathrm{X} \in \mathcal{P}$.

Proof:

$\mathrm{X} \xrightarrow{f} \mathrm{Y}$
f computable in $p(n)$ time
Y solvable in $q(n)$ time
p, q are polynomial in time
To solve x , we compute $\mathrm{f}(\mathrm{x})$ and solve this instance. The time required: $p(n)+q(p(n))$.

7.2 Non Deterministic Polynomial Time: $\mathcal{N} \mathcal{P}$

$\mathcal{N P}$: class of all decision problems for which a polynomial-time algorithm exists that verifies solutions that are already given to Yes-instances.

7.2.1 Clique example

We do not know how to solve this problem efficiently. However, if someone gives us a solution we can simply count if the clique contains k nodes, then we check that each node has an edge to all other nodes. This can be done in polynomial time.

$$
\text { Wednesday, LV } 5 \text { (2016-09-28) }
$$

1 NP Completeness

The N in NP stands for "Non deterministic".
A problem Y is called NP-complete if $\mathrm{Y} \in \mathcal{N} \mathcal{P}$ and $\forall x \in \mathcal{N} \mathcal{P}: X \leq_{p} Y$. It contains the whole difficulty of the class $\mathcal{N P}$. There is no intersections between the \mathcal{P} and $\mathcal{N} \mathcal{P}$-complete set. I.e., as long as $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, there is no $\mathcal{N} \mathcal{P}$-complete problem in \mathcal{P}.

Proof

Assume $\mathrm{Y} \in \mathcal{P}$ and Y is $\mathcal{N} \mathcal{P}$-complete. It then follows that $\forall x \in \mathcal{N} \mathcal{P}: X \leq{ }_{p} Y$ and $\forall x \in \mathcal{N} \mathcal{P}: X \in \mathcal{P}$. This is not possible?

Assume that (Y is $\mathcal{N} \mathcal{P}$-complete) and $\left(\mathrm{Y} \leq{ }_{p} \mathrm{Z}\right)$ and $(\mathrm{Z} \in \mathcal{N} \mathcal{P})$, it then follows that Z is $\mathcal{N} \mathcal{P}$-complete.

Proof
if $\forall x \in \mathcal{N} \mathcal{P}: X \leq_{p} Y \leq_{p} Z$ then $\forall x \in \mathcal{N P}: X \leq_{p} Z$ due to transitivity.
Note: If you reduce X to Y it means that Y is at least as hard as X !!! If you are asked to prove a reduction $\mathrm{X} \leq_{p} \mathrm{Y}$ you shall show that you can solve X using Y.
Note 2: The $\mathcal{N} \mathcal{P}$-problems are hard to solve, easy to check, but the $\mathcal{N} \mathcal{P}$ complete are hard to check and to solve. Only the $\mathcal{N} \mathcal{P}$-complete problems are non-polynomial.

1.1 Find an $\mathcal{N} \mathcal{P}$-complete problem - The SAT Problem

Boolean variables: x_{i}
Literals: $\mathrm{x}_{i}, \overline{\mathrm{x}}_{i}\left(\neg \mathrm{x}_{i}\right)$
Clause: \vee of literals
Conjunctive Normal Form (CNF): \wedge of clauises

1.1.1 Example of $\mathcal{N} \mathcal{P}$-complete problem - CNF that describes vertex cover $\leq \mathrm{k}$

Given a graph G we want to find a way to "cover all edges" (guard at the museum) using at most k edges. If we have a graph with vertices $(1,2,3,4)$ and edges $((1,2),(1,3),(2,3),(3,4))$ we can achieve this with CNF:
$\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left(\mathrm{x}_{1} \vee \mathrm{x}_{3}\right) \wedge\left(\mathrm{x}_{2} \vee \mathrm{x}_{3}\right) \wedge\left(\mathrm{x}_{3} \vee \mathrm{x}_{4}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3}\right) \wedge$ $\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{4}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{3} \vee \neg \mathrm{x}_{4}\right) \wedge\left(\neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3} \vee \neg \mathrm{x}_{4}\right)$

SAT: Given a CNF, find a satisfying assignment of truth values. I our example we would set $\mathrm{x}_{1}=\mathrm{x}_{3}=1$ and $\mathrm{x}_{2}=\mathrm{x}_{4}=0$.

SAT $\in \mathcal{N} \mathcal{P}$, if someone gives us a satisfied assignment we can check if the assignment is valid in polynomial time (linear in this case). The proof that SAT $\in \mathcal{N} \mathcal{P}$-complete is long...

1.2 K-SAT

A SAT-problem where the CNF contian atmost k literals in each clause.

1.2.1 Proof that $\mathrm{SAT} \leq_{p}$ 3-SAT

We are given an instance of the first problem (a CNF with unlimited lengthclauses) ϕ. Now we have to construct an equivalent formula that have at most 3 literals in every clause.

Take any clause C in ϕ, that is too long, and try to split it into two sets A and B. This leads us to $C=A \vee B$. Replace $A \vee B$ with two shorter clauses A $\wedge B$ (this does not work since $\wedge \neq \wedge$). However, by introducing a fresh variable u we can write: $A \vee B \Leftrightarrow(A \vee u) \wedge(B \vee \neg u)$.

Proof that $\mathbf{A} \vee \mathbf{B} \Leftrightarrow(\mathbf{A} \vee \mathbf{u}) \wedge(\mathbf{B} \vee \neg \mathbf{u})$
If A is true, $A \vee u$ holds. We can choose u to be false, hence $\neg u$ is true and (A $\vee \mathrm{u}) \wedge(\mathrm{B} \vee \neg \mathrm{u})$ is true. Ptr also showed the other way.

Iterate this until all clauses have atmost three literals.
ψ : The generated formula
ϕ is satisfiable $\Leftrightarrow \psi$ is satisfiable

Does this run in polynomial time? Yes, because of some sum of cube argument.

3-SAT is also $\mathcal{N} \mathcal{P}$-complete!

1.2.2 Proof sketch that 3 -SAT \leq_{p} Indep. Set

$\left(\mathrm{x}_{i} \vee \mathrm{x}_{j} \vee \mathrm{x}_{k}\right) \wedge \ldots$, where each literal could be negated.
m is the number of clauses
n is the number of variables

Every clause is represented by a triangle in a graph and each vertex is labeled by the name of their corresponding literal in the CNF. For every variable we also have an edge $\left(\mathrm{x}_{i}-\neg \mathrm{x}_{i}\right), \ldots$ We now connect each vertex in a triangle with its corresponding "edge vertex".

The given CNF is satisfiable $\Leftrightarrow \mathrm{G}$ has an independent set with $m+n$ nodes.

Proof

If the formula is satisfiable it means that we have one true literal in every clause (one true vertex in each triangle). We mark the true vertex in each triangle as well as the false literal vertex in the "edges".

If we have an independent set of size $m+n$ we know that we can have at most one marked vertex in each triangle and at most one node from each edge pair.

Indep. Set is $\mathcal{N} \mathcal{P}$-complete

1.3 Subgraph Isomorphism

Given two graphs G and H we ask ourselves if H is a subgraph of G. We try to solve this by: Clique \leq_{p} Subgraph Isomorphism.

1.3.1 Reduction

Given a graph G and a number k we ask if the graph contains a clique of size k. Hence $f(G, k)=(G, H)$ where H is a clique of size k. H is exponentially larger than k (exponentially blow up). This is a polynomial time reduction, because we consider the instance as a whole (the graph and the number).

Algorithms: Lecture 10

Chalmers University of Technology

Today's Topics

Basic Definitions
Path, Cycle, Tree, Connectivity, etc.
Graph Traversal
Depth First Search
Breadth First Search
Testing Bipartatiness (One Graph Two colors)

Cycles

Def. A path is a sequence of $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$ nodes with the property that each consecutive pair v_{i}, v_{i+1} is joined by an edge in G.

Def. A cycle is a path $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$ in which $v_{1}=v_{k}, k>2$, and the first $k-1$ nodes are all distinct.

Directed G: directed path, cycle
Every pair $\left(v_{i}, v_{i+1}\right)$ in the path or cycle is joined by a directed edge > must respect the directionality of edges.

cycle $C=1-2-4-5-3-1$
Not a cycle: 1-3-8-7-3-1

Connected Graph

Def. An undirected graph is connected if, for every pair of nodes u and v, there is a path from u to v.

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

- biologists draw their tree from left to right

GUI Containment Hierarchy

GUI containment hierarchy. Describe organization of GUI widgets.

Graph Traversal

Connectivity

$s-\dagger$ connectivity problem. Given two node s and t, is there a path between s and \dagger ?
s - \dagger shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Social Network: deciding whether two persons are connected through a chain of friends.
- Fewest number of hops in a communication network.
- Maze traversal.

How to proceed to find 1-6 connectivity? > Need a systematic exploration of the graph

Breadth First Search

Breadth First Search (BFS):

BFS(s) // Find a BFS tree rooted at s, which includes all nodes reachable from node s.
Create a Boolean array Discovered[1...n], Set Discovered[s] = true and Discovered[v] = false for all other v.

Create an empty FIFO queue Q, add node s to Q.
while Q is not empty
dequeue a node u from Q
for each node v adjacent to node u
if Discovered[v] is false then add node v to Q, set Discovered[v] to true
endif
endfor
endwhile

Breadth First Search

BFS Tree:

Create an empty tree T

Add edge (u, v) to the tree T, when v is discovered the first time

http://i.stack.imgur.com/TjhfH.png

Breadth First Search: Analysis

Analysis:

- A node u enters Q at most once, and the for loop needs nodes adjacent to every such u
- O(1) to process an edge
- Finding all v adjacent to u :

- Adjacency Matrix:
> we have to check all matrix entries in u's row: $O(n)$
> total time required to process all rows of the Matrix: $O\left(n^{2}\right)$
- Adjacency List:
> when we consider node u, there are deg(u) incident edges (u, v)
$>$ total time processing all the edges is $\Sigma_{\mathrm{u} \in \mathrm{V}} \operatorname{deg}(\mathrm{u})=\underset{1}{2 m} \Rightarrow O(m)$
> setup time for the array Discovered is $O(n), \Rightarrow O(m+n)$
each edge (u, v) is counted exactly twice in sum: once in $\operatorname{deg}(\mathrm{u})$ and once in $\operatorname{deg}(\mathrm{v})$
$>\mathrm{m}$ is at least $\mathrm{n}-1$ for connected graph, m dominates $\Rightarrow \mathrm{O}(\mathrm{m})$

Breadth First Search: Properties

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm partitions the nodes into layers:

- $L_{0}=\{s\}$.

- $L_{1}=$ all neighbors of L_{0}.
- $L_{2}=$ all nodes that do not belong to L_{0} or L_{1}, and that have an edge to a node in L_{1}.
- $L_{i+1}=$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_{i}.
> Implementation using Queue processes the nodes exactly layer by layer
> explores in order of distance from s.

Breadth First Search: Properties

Property. Let T be a BFS tree of $G=(V, E)$, nodes u, v belong to T, and let (u, v) be an edge of G. Then the level of u and v differ by at most 1 .

Let u, v belong to layers L_{i} and L_{j} respectively.
Suppose i<j-1. (a contradiction)
> When BFS examines the edges incident to u, since u belongs to layer L_{i}, the only nodes discovered from u belong to layers L_{i+1} and earlier:
> hence, if v is a neighbor of u, then it should have been discovered by this point at the latest, and
> should belong to layer L_{i+1} or earlier

Breadth First Search: Properties

What follows:
$>$ For each i, L_{i} consists of all nodes at distance exactly i from s.
\Rightarrow There is a path from s to t iff t appears in some layer.
> Moreover: s-t is a shortest path.

(c)
(b)

Depth First Search

Depth First Search (DFS):

Create a Boolean array Explored[1...n], initialized to false for all.
DFS(u)
set Explored[u] to true
for each node v adjacent to node u
if Explored $[v]$ is false then
DFS(v)
endif
endfor

- Call DFS(s)
> each recursive call is done only after termination of the previous call, this gives the desired depth first behavior.
- In iterative implementation, maintain a stack explicitly.

Depth First Search

DFS tree:

Take an array parent, set parent[$v]=u$ when calling DFS (v) due to edge (u, v). While setting $u(u \neq s)$ as Explored, add the edge (u,parent[u]) to the tree.

Depth First Search: Edge Classification

Edge Classification:

As we execute DFS, an edge (u, v) can be classified into four edge types.
$>$ IF v is visited for the first time as we traverse the edge (u, v),

1. then the edge is a tree edge.
> ELSE, v has already been visited:
2. If v is an ancestor of u, then (u, v) is a back edge.
3. Else, if v is a descendant of u, then (u, v) is a forward edge.
4. Else, if v is neither an ancestor or descendant of u, then (u, v) is a cross edge. (u and v belong to different paths from the root)

Depth First Search: Edge Classification

Important Properties:
> tree edges form the DFS tree in G.
$>G$ has a cycle if and only if DFS finds at least one back edge.
> G is undirected graph: it cannot contain forward edges and cross edges
> the edge (v, u) would have already been traversed during DFS before we reach u and try to visit v via edge (u, v).

BFS vs. DFS

BFS: Put unvisited vertices on a queue.
> Examines vertices in increasing distance from s.
> Using adjacency list requires $O(m)$.

http://i.stack.imgur.com/Q+Y08.jpg

DFS: Put unvisited vertices on a stack.
> tries to explore as deeply as possible
> Mimics maze exploration.
$>O(m)$ due to similar reasoning.

Finding all Articulation Points

Def. An articulation point in a connected, undirected graph is a node v such that removal of v and of the edges incident to v makes the graph disconnected.

Given: an undirected graph $G=(\mathrm{V}, \mathrm{E})$.
Goal: Find all articulation points.
Motivation:
reliability (failure tolerance) of communication networks

Finding all Articulation Points

Given: an undirected graph $G=(V, E)$.
Goal: Find all articulation points.
Observation: there no cross edges in DFS tree on undirected graphs.

- Chose arbitrary start node s and find a DFS tree rooted at s
$>s$ is an articulation point iff s has more than one child in the DFS tree
- run DFS n times, once from every start node, which costs $O(n m)$ time.
> Amazingly, it is possible achieve $O(m)$ time, using only one DFS tree and a variant of dynamic programming

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1=\{1,2,3,4,5,6,7,8\}$.

Connected Component

Connected component. In undirected graph G, Find all nodes reachable from s.

```
R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where }u\inR\mathrm{ and }v\not\in
    Add v to R
Endwhile
```


Upon termination, R is the connected component containing s.
> BFS, DFS $\Rightarrow \mathrm{O}(\mathrm{m})$
G is connected?
> iff all nodes are reachable from arbitrary node s
All connected components of \mathbf{G} ?
> $O(m+n)$: If the search has aborted without finding all nodes, restart the search in a yet unmarked node, and so on.

Strong Connectivity

A directed graph G is strongly connected if, for every two nodes u and v, there is a path from u to v and a path from v to u.
> The street map of a city with one-way streets should be strongly connected, or the traffic planners made a mistake.
G is a directed graph, Is G Strongly Connected?

- $G^{\text {rev }}$:obtained from G simply by reversing the direction of every edge
- Run BFS (or DFS) with an arbitrary start node s, once on each G, and $G^{r e v}$
> both searches reach all nodes IFF G is Strongly Connected

Strong Connectivity

All Strongly connected components of G ?

- Find out the strongly connected component containings (same as in Strong Connectivity check)
- Restart the search in a node, yet not part of any strong component,
- and so on.
- $O(n m)$: Worst case G has many small connected components, $O(m)$ time for each one using the above approach.
- Remark: $O(m)$ is achievable by some tricky use of DFS, we skip.

Testing Bipartiteness (One Graph Two colors)

Bipartite Graphs

Def. An undirected graph $G=(V, E)$ is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

- Scheduling: machines = red, jobs = blue.

a bipartite graph

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
> easier if the underlying graph is bipartite (matching)
>tractable if the underlying graph is bipartite (independent set)

a bipartite graph G

another drawing of G
- we need to understand structure of bipartite graphs.

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite (not 2-colorable)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Case (i)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.

Pf. (i)

- By assumption edges don't join nodes on same layer
> Every edge joins two nodes in adjacent layers.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_{j}.
- Let $z=\operatorname{lca}(x, y)=$ lowest common ancestor.
- Let L_{i} be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.

- Its length is $1+(j-i)+(j-i)$, which is $2(j-i)+1$, an odd number. -

$$
\begin{array}{lll}
(x, y) & \text { path from } & \text { path from } \\
y \text { to } z & z \text { to } x
\end{array}
$$

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

bipartite
(2-colorable)

not bipartite (not 2-colorable)

Algorithms: Lecture 11

Chalmers University of Technology

Today's Topics

Directed Acyclic Graphs and Topological Ordering

Minimum Spanning Trees

>Prim's Algorithm
> Krusal's Algorithm

DAGs and Topological Ordering

Directed Acyclic Graphs (DAG)

Def. A Directed Cycle in a directed graph is a cycle that can be traversed respecting the orientation of the edges: $v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}$, where every $\left(v_{i}, v_{i+1}\right)$ and $\left(v_{n}, v_{1}\right)$ is a directed edge.

Def. A DAG is a directed graph that contains no directed cycles.
Given: a directed graph $G=(V, E)$. Goal: Find a directed cycle in G, or report that G is a DAG.

Motivation: Precedence constraints: edge $\left(v_{i}, v_{j}\right)$ means v_{i} must precede v_{j}. Task v_{i} must be done before v_{j} tasks can be calculations in a program or logic circuit, jobs in a project, steps in a manufacturing process, etc. A directed cycle would indicate error in the design of such models

Topological Order

Def. A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $v_{1}, v_{2}, \ldots, v_{n}$ so that all directed edges go to the right, that is for every edge $\left(v_{i}, v_{j}\right)$ we have $i<j$.

Given: a directed graph $G=(V, E)$.
Goal: Construct a topological order of G, or report that G does not admit a topological order.

Motivation: Nodes are the tasks with pairwise dependency constraints.
Existence of a topological order for G guarantees it is a DAG

Directed Acyclic Graphs

If G has a topological order, then G is a $D A G$.

- Topological order allows only edges from left to right
- With this we can never close a cycle.
- Closing a cycle would require an edge from right to left which is against the definition of topological order.

Directed Acyclic Graphs

Q. Does every DAG have a topological ordering?
Q. If so, how do we compute one?

Stronger Version: G is a DAG if and only if G has a topological order

- If part (If G has a topological order, then G is a DAG.)... done already
- Only if: If G is a DAG, then G has a topological ordering.

Observation:

A topological ordering must start with a node with NO incoming edges.

Directed Acyclic Graphs

If G is a DAG, then G has a node with no incoming edges.
Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. .

Directed Acyclic Graphs

If G is a $D A G$, then G has a topological ordering.

Pf.

- Lets solve an example first: Given a DAG we find out topological ordering.
- Then, we proceed to the formal proof.

Topological Ordering Algorithm: Example

Topological order:

Topological Ordering Algorithm: Example

Topological order: v_{1}

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}$.

Directed Acyclic Graphs

If G is a $D A G$, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if $n=1$.
- Given DAG on $n>1$ nodes, find a node v with no incoming edges.
- $G-\{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G-\{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G-\{v\}$ in topological order.
- This is valid since v has no incoming edges. -

Directed Acyclic Graphs

To compute a topological ordering of G : (already practiced on the example)

- Find a node v with no incoming edges and order it first
- Delete v from G
- Recursively compute a topological ordering of G-\{v\} and append this order after v

Seems like a Greedy Algorithm, however, nothing to optimize

- All we need to do is to chose an arbitrary node v with in-deg $(v)=0$

How to efficiently maintain an updated degree for all current nodes in G ?
$>$ Queueing \& Counting

Topological Sorting Algorithm: Running Time

Maintain the following information:

- count[v] = remaining number of incoming edges, in-degree(v)
- Q= queue of remaining nodes with no incoming edges, in-degree(v)=0
- Initialization: $O(m)$ via single scan through graph.
- Update: to delete u
- remove u from Q
- decrement count[v] for all edges from u to v, and
- add v to Q if count[v] hits 0
$>$ this is $O(1)$ per edge ONCE
- Updating in-degrees costs $O(m)$ in total: G as Adjacency lists
> The order of removal from Q gives the Topological Ordering

Minimum Spanning Trees

Minimum Spanning Tree (MST)

Given: a connected undirected graph $G=(V, E)$ where every edge has some positive $\operatorname{cost} c_{e}$ (also called weight)

Minimum spanning tree (MST): an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree (it "spans" all nodes in V) whose sum of edge weights is minimized.

Goal: Find an MST in G.

$G=(V, E)$

$$
T, \Sigma_{e \in T} C_{e}=50
$$

Applications

MST is fundamental problem with diverse applications.

- Network design.
- telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
- traveling salesperson problem, Steiner tree
- Indirect applications.
- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.

Minimum Spanning Tree (MST)

$G=(V, E)$

$T, \Sigma_{e \in T} C_{e}=50$

Cayley's Theorem. There are n_{\uparrow}^{n-2} spanning trees in a complete graph of n nodes
Problem Analysis: can't solve by brute force

Which edges should be chosen by an MST?
Intuitively: Those with min cost, to get an overall min.
Precisely: If e is a cheapest edge in G, then e belongs to some MST.
> Let T, an MST, does not include e.
> Add e to $T \Rightarrow T$ has a cycle C involving e.
> Remove some other edge from C, get a better T.
Greedy Algorithm?

MST - Greedy Algorithms

MST - Greedy Algorithms

The greedy rule that we followed in the demo on previous slides can be formulated as:
> Start at some root node s and greedily grow a tree T from s outward.
> At each step, add the cheapest edge e to T having one endpoint in T.
> Both edges in T would mean T gets a cycle.

Prim's Algorithm for finding an MST

Initial sets $=\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\},\{h\},\{i\}$

Edges	Weight
(g, h)	1
(c, i)	2
(f, g)	2
(a, b)	4
(c, f)	4
(g, i)	6
(c, d)	7
(h, i)	7
(a, h)	8
(b, c)	8
(d, e)	9
(e, f)	10
$(b h)$	11
(d, f)	14

Initial sets $=\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\},\{\underline{h}\},\{i\}$
Final sets $=\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g, h\},\{i\}$

Initial sets $=\{a\},\{b\},\{\underline{c}\},\{d\},\{e\},\{f\},\{g, h\},\{\underline{i}\}$
Final sets $=\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f\},\{g, h\}$

Initial sets $=\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f\},\{g, h\}$
Final sets $=\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f, g, h\}$
$>$ In intermediate steps, we don't get a tree actually.

- A collection of connected components of edges, called a "Forest"

Initial sets $=\{\underline{a}\},\{\underline{b}\},\{c, i\},\{d\},\{e\},\{f, g, h\}$
Final sets $=\{a, b\},\{c, i\},\{d\},\{e\},\{f, g, h\}$

Initial sets $=\{a, b\},\{\underline{c}, i\},\{d\},\{e\},\{f, g, h\}$
Final sets $=\{a, b\},\{c, f, g, h, i\},\{d\},\{e\}$

Initial sets $=\{a, b\},\{c, f, g, h, \underline{i}\},\{d\},\{e\}$ Final sets $=\{a, b\},\{c, f, g, h, i\},\{d\},\{e\}$

Initial sets $=\{a, b\},\{\underline{c}, f, g, h, i\},\{\underline{d}\},\{e\}$
Final sets $=\{a, b\},\{c, d, f, g, h, i\},\{e\}$

Initial sets $=\{a, b\},\{c, d, f, g, \underline{h, i}\},\{e\}$
Final sets $=\{a, b\},\{c, f, d, g, h, i\},\{e\}$

Initial sets $=\{\underline{a}, b\},\{c, d, f, g, \underline{h}, i\},\{e\}$
Final sets $=\{a, b, c, d, f, g, h, i\},\{e\}$

Initial sets $=\{a, \underline{b, c}, d, f, g, h, i\},\{e\}$
Final sets $=\{a, b, c, d, f, g, h, i\},\{e\}$

Initial sets $=\{a, b, c, \underline{d}, f, g, h, i\},\{\underline{e}\}$
Final sets $=\{a, b, c, d, e, f, g, h, i\}$

Initial sets $=\{a, b, c, d, \underline{e}, f, g, h, i\}$
Final sets $=\{a, b, c, d, e, f, g, h, i\}$

Initial sets $=\{a, \underline{b}, c, d, e, f, g, \underline{h}, i\}$
Final sets $=\{a, b, c, d, e, f, g, h, i\}$

Initial sets $=\{a, b, c, \underline{d}, e, f, g, h, i\}$
Final sets $=\{a, b, c, d, e, f, g, h, i\}$

MST - Greedy Algorithms

The previous demo follows what we call: Kruskal's algorithm.
> Start with $\mathrm{T}=\phi$. Consider edges in ascending order of cost.
> Insert edge e in T unless doing so would create a cycle.
> Like Prim's, this algorithm also produce an MST.

MST - Greedy Algorithms

Correctness?
Our "the cheapest edge" argument does not hold for every step.

Let's extend it carefully

Simplification: All edge costs c_{e} are distinct.

A generalized version of cheapest edge inclusion property of MSTs:
If we partition the node set V arbitrarily in two non-empty sets X and Y, then the cheapest edge among all edges connecting X and Y must belong to any MST.

MST - Greedy Algorithms

Edge inclusion lemma:
Let $X=S$ and $Y=V \backslash S$, and suppose $e=(u, v)$ is the minimum cost edge of E, between X and Y.

We want to show:
$>e$ is in every minimum spanning tree of G

- Or equivalently, if e is not in T, then T is not an MST.

Greedy Algorithms: Edge inclusion lemma

Edge inclusion lemma
Pf. Suppose T is an MST that does not contain e
> Add e to T , this creates a cycle

- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in X and v_{1} in Y

$T^{*}=T \cup\{e\}-\left\{e_{1}\right\}$ is a spanning tree with lower cos \dagger
> by assumption, e is the minimum cost edge between X and Y
Hence, T is not a minimum spanning tree (a contradiction).
- In the presence of assumption (All edge costs c_{e} are distinct), above proof also says that: the MST is uniquely determined.

Optimality Proofs

Prim's (Kruskal's) algorithm computes a Tree which is an MST

Show that:
> When an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and $V \backslash S$ for some set S.
> All selected edges together form a tree (NO Cycles).
> The tree spans the entire set V.

Optimality Proofs

Prim's Algorithm: Without loosing any detail, we can write it as follows.

$$
S=\{ \} ; \quad T=\{ \} ;
$$

while S != V This ensures all nodes are included in the tree

Optimality Proofs

Kruskal's Algorithm:
Let $C=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n}\right\}\right\}, T=\{ \}$
while $|C|>1 \longleftrightarrow$ This ensures all nodes are included in the tree
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge
joining distinct sets in C Ensures Cycle Free
Replace C_{i} and C_{j} by $C_{\mathrm{i}} \cup C_{\mathrm{j}}$
Add e to T
endwhile

Edge inclusion lemma ensures every e chosen here actually belongs to an MST

Yet another Greedy Algorithm

Reverse-Delete Algorithm:
Delete the most expensive edge that does not disconnect the graph.
Relies on the following lemma:
> The most expensive edge on a cycle is never in a minimum spanning tree
> Correctness is proved along the same lines.

Remark: For dense graphs it is slower than the others, as it has to delete most edges.

Dealing with the assumption of no equal cost edges

Perturbation Argument:
Force the edge costs to be distinct to break the ties

- Add small distinct quantities to the edges having equal costs

Apply Prim's /Kruskal's algorithm
. the resulting edge set is an MST also for G with the original edge costs
> the sum of perturbations should be small enough

Application: Clustering

Clustering: a partitioning of a set of (data) points into disjoint subsets of points, called clusters.

How: Some distance function is defined between the points.

Spacing: the minimum distance of two clusters
(or equivalently, the minimum distance of any two points from different clusters).

Given : a collection of n points in a geometrical space, and an integer $k<n$. The pairwise distances of points are known, or they can be easily computed.

Goal: Construct a clustering with k clusters and maximum spacing.

Distance clustering

Divide the data set into 2 subsets and maximum spacing

- $\operatorname{dist}\left(S_{1}, S_{2}\right)=\min \left\{\operatorname{dist}(x, y) \mid x\right.$ in S_{1}, y in $\left.S_{2}\right\}$

Motivations:
Clustering in general has many applications in data reduction, pattern recognition, classifcation, data mining, and related fields.

Distance Clustering Algorithm

Kruskal's Algorithm:
Let $C=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}}\right\}\right\} ; T=\{ \}$
while $|C|>K$
Let $e=(u, v)$ with u in C_{i} and v in C_{j}
be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $C_{i} \cup C_{j}$
endwhile

The K nodes sets so obtained are the K clusters.

To prove: The obtained spacing is optimal.
The proof follows from the fact that Kruskal's algorithm always joins two disjoint subsets (into a single cluster) via a min cost edge having endpoints in both.

Implementation

Which one is faster Prim's Algorithm or Kruskal's Algorithms?
Prim's:
$S=\{ \} ; T=\{ \} ;$
while S != V
How we implement this step, is going to decide the running time.
choose the minimum cost edge
$e=(u, v)$, with u in S, and v in $V \backslash S$
add e to T add v to S
endwhile

Naïve implementation
$>(n-1)$ iterations with $O(m)$ every time to choose min cost $e \Rightarrow O(n m)$

Implementation

Which one is faster Prim's Algorithm or Kruskal's Algorithms?

Prim's:

$S=\{ \} ; T=\{ \} ;$
while S != V

How we implement this step, is going to decide the running time.
choose the minimum cost edge
$e=(u, v)$, with u in S, and v in $V \backslash S$
add e to T
add v to S
endwhile
Improving the Naïve:

- For each v in $V \backslash S$, maintain attachment cost $a[v]=$ cost of cheapest edge $e=(u, v)$, with u in S
- Choosing the min cost edge is restricted to the n edges represented by a. When "add v to S " happens, update array a as:

$$
\begin{aligned}
& \text { foreach (edge e } e(v, u) \text { incident to } v) \\
& \quad \text { if }\left((u \notin S) \text { and }\left(c_{e}<a[u]\right)\right) \\
& \text { decrease cost of } a[u] \text { to } c_{e}
\end{aligned} \quad \Rightarrow O(n)
$$

Inside the while: $O(n+n)=O(n)$
Altogether: $(n-1)$ iterations of while with $O(n)$ every time $\Rightarrow O\left(n^{2}\right)$

Implementation

Which one is faster Prim's Algorithm or Kruskal's Algorithms?

Prim's:

$S=\{ \} ; T=\{ \} ;$
while $S!=\mathrm{V}$

How we implement this step, is going to decide the running time.
choose the minimum cost edge

$$
e=(u, v) \text {, with } u \text { in } S \text {, and } v \text { in } V \backslash S
$$

add e to T add v to S
endwhile
Choosing a better data structure:

- Let F be the set of edges between S, and $V \backslash S$.
\rightarrow Choose the minimum cost e from F
- when "add v to S" happens, we update F:
$>$ every e enters and leaves F exactly once $\Rightarrow O(m)$
$>$ If F is a priority Queue, insert/remove(find $\min)$ is achievable using $O(\log m)$
\Rightarrow Altogether $\Rightarrow O(m \log m) \Rightarrow O(m \log n)$

Implementation

Which one is faster Prim's Algorithm or Kruskal's Algorithms?
Prim's:
$S=\{ \} ; T=\{ \} ;$
while S != V
choose the minimum cost edge
$e=(u, v)$, with u in S, and v in V $V S$
add e to T add v to S
endwhile

Both implementations of Prim's algorithm are justified:
$>O\left(n^{2}\right)$ is somewhat faster if the graph is dense (has a quadratic number of edges),
$>$ but otherwise, $O(m \log n)$ is considerably faster.

Implementation

Which one is faster Prim's Algorithm or Kruskal's Algorithms?
Kruskal's:
Let $C=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n}\right\}\right\}, T=\{ \}$
while $|C|>1$
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $C_{\mathrm{i}} \cup C_{\mathrm{j}}$
The running time depends on the Add e to T
endwhile
We need efficient way to find a "global" min cost edge:
$>$ sort the edges wrt cost $\Rightarrow O(m \log m) \Rightarrow O(m \log n)$
> if current e creates a cycle, move to the next in the sorted list.
Avoiding cycles efficiently depends how we:
> Make sure for $e=(u, v), u$ and v belong to disjoint sets
> Maintain C after every "Replace C_{i} and C_{j} by $C_{i} \cup C_{j}$ "
>A new data structure: Union-and-Find

Union-and-Find

- Maintains partitions of a set (here: V) into subsets
- Each subset has a label

Supports the following operations:
FIND(i): returns the label of the subset that contains element i.
$\operatorname{UNION}(A, B)$: merge the subsets with labels A and B, that is, replace these sets with $A \cup B$ and give it a label.

UF Items:

Union-and-Find

UF Sizes:

1	5
2	3
6	1
7	3
17	1
4	4

FIND(i): return UF.sets[i].

UF Sets Array:

Takes a constant amount of time. $\Rightarrow O(1)$

1	2	1	4	2	6	7	1	1	2	4	7	1	4	4	7	17
1																

Union-and-Find

FIND(i): O(1)
$\operatorname{UNION}(A, B): O(n)$ in the worst case

```
Kruskal's:
Let \(C=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n}\right\}\right\}, T=\{ \}\)
while \(|C|>1\)
Let \(e=(u, v)\) with \(u\) in \(C_{i}\) and \(v\) in \(C_{j}\) be the minimum cost edge joining distinct sets in \(C\)
Replace \(C_{\mathrm{i}}\) and \(C_{\mathrm{j}}\) by \(C_{\mathrm{i}} \cup C_{\mathrm{j}}\) Add e to T
endwhile
```

2 FIND calls per e $\Rightarrow O(\mathrm{~m})$

- Overall: $O(\mathrm{mn})$ dominates the sorting cost
- Why considering $O(n)$ which is worst case for ONE call to UNION?
- Can we do better by bounding the total for all UNION operations?
$>$ What is the time for k < n call to UNION?

Union-and-Find

Rethinking "Time" for UNION(A,B):
Elementary operation:
> how often every element is relabeled and moved to other sets.
What invokes relabeling of an element?
> if it belongs to the smaller set in a UNION operation.
What happens then?
> the element now belongs to a new set of at least double the size.
What is the size of the larger set after k UNION operations?
$>$ All sets are of size 1. After first UNION, the largest is 2
After the second UNION, the largest can have at most 3 elements
> ..., after k UNION operation, the largest can have at most $k+1$ size.
Every "elementary operation" moves the element from a set of size x to $2 x$
> every element is relabeled at most $\log _{2}(k+1)$ times.
$>$ For all elements $\Rightarrow O(k \log k)$
$>$ Sorting: $O(m \log m) \Rightarrow O(m \log n)$

$$
m \leq n^{2} \Rightarrow \log m \text { is } O(\log n)
$$

Kruskal's:
Let $C=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n}\right\}\right\}, T=\{ \}$
2 FIND calls per e while $|C|>1$ $\Rightarrow O(\mathrm{~m})$
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $C_{i} \cup C_{j}$
($n-1$) UNION calls $\Rightarrow O(n \log n)$
endwhile

- Sorting dominates $\Rightarrow O(m \log n)$
- Another Implementation of Union-and-Find
> Simpler and Faster in practice

- UNION becomes faster
$>O(1)$
- FIND(i) = Follow the pointer from ito the root of its tree.
$>O(?)$

Union-and-Find

FIND(i) requires $O(\log n)$ in a tree-based union-and-find data structure containing n items.

Pf.
What is the depth of an element v in its tree?
$>$ the number of times the set containing it is renamed.

How many times a set can change its name?
$>$ the set containing v at least doubles every time when its name is changed.

The largest number of times the size can double is $\log _{2} n$. \cdot
Kruskal's Algorithm:
Sorting $O(m \log n)$, FIND: $O(m \log n)$, UNION: $O(n)$
> Same running time as using the array-based union-and-find
> Simpler and Faster in practice

Algorithms: Lecture 12

Chalmers University of Technology

Today's Topics

> Shortest Paths
> Network Flow Algorithms

Shortest Path in a Graph

Shortest Path Problem

Shortest path network.

- Directed graph $G=(V, E)$.
- Source s, destination \dagger.
- Length $\ell_{e}=$ length of edge e, non-negative.

Single Source Shortest path problem: find shortest directed path from s to t.
Length of path = sum of edge lengths in path

Length of path s-2-3-5-t:
$=9+23+2+16$ $=48$.

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{ \} \\
& P Q=\{S, 2,3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{ \} \\
& P Q=\{S, 2,3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& P Q=\{2,3,4,5,6,7,+\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& P Q=\{2,3,4,5,6,7,+\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2\} \\
& P Q=\{3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

```
S={s,2}
PQ = {3,4,5,6,7,\dagger}
```


Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2\} \\
& P Q=\{3,4,5,6,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6\} \\
& P Q=\{3,4,5,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6\} \\
& P Q=\{3,4,5,7, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6,7\} \\
& P Q=\{3,4,5, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,6,7\} \\
& P Q=\{3,4,5, \dagger\}
\end{aligned}
$$

delmin

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,6,7\} \\
& P Q=\{4,5, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,6,7\} \\
& P Q=\{4,5, \dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,5,6,7\} \\
& P Q=\{4, t\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,5,6,7\} \\
& P Q=\{4, t\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7\} \\
& P Q=\{\dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7\} \\
& P Q=\{\dagger\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7, \dagger\} \\
& P Q=\{ \}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7, \dagger\} \\
& P Q=\{ \}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7, \dagger\} \\
& P Q=\{ \}
\end{aligned}
$$

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes:

$$
(v)=\min _{e=(u, v): u S} d(u)+\ell_{e}
$$

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
(v)=\min _{e=(u, v): u S} d(u)+\ell_{e}
$$

add v to S, and set $d(v)=\pi(v)$. part, followed by a single edge (u, v)

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S, d(u)$ is the length of the shortest s - u path.
Pf. (by induction on $|S|$)
Base case: $|S|=1$ is trivial.
Inductive hypothesis: Assume true for $|S|=k \geq 1$.

- Let v be next node added to S, and let $u-v$ be the chosen edge.
- The shortest s-u path plus (u, v) is an $s-v$ path of length $\pi(v)$.
- Consider any $s-v$ path P. We'll see that it's no shorter than $\pi(v)$.
- Let $x-y$ be the first edge in P that leaves S, and let P^{\prime} be the $s-x$ path.
$>P$ is already too long as soon as it leaves S.

Dijkstra's Algorithm: Implementation

To Do:
For each unexplored node, explicitly maintain: $\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}$.
> Next node to explore $=$ node with minimum $\pi(v)$.
> When exploring v, for each incident edge $e=(v, w)$ update: $\quad(w)=\min \left\{(w), \quad(v)+\ell_{e}\right\}$.

Implementation \& Running Time

Dijkstra's Algorithm:
$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
while S!= V
Choose v in $\mathrm{V} \backslash \mathrm{S}$ with minimum $\mathrm{d}[\mathrm{v}] \longleftrightarrow$ The running time depends on the implementation of these steps.

$$
d[w]=\min (d[w], d[v]+\ell(v, w))
$$

endif
endwhile

Implementation \& Running Time

Dijkstra's Algorithm:

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
while S!= V
Choose v in $V \backslash S$ with minimum $d[v]$

Add v to S
foreach w in the neighborhood of $v \longleftarrow$

$$
d[w]=\min (d[w], d[v]+\ell(v, w))
$$

endif

$$
\begin{aligned}
& \text { try all candidate pairs: } \\
& \Rightarrow \text { (worst case) every } \\
& \text { time we are processing } \\
& \text { edges to all (} n-1 \text {) } \\
& \text { neighbours } \\
& \Rightarrow O(n)
\end{aligned}
$$

endwhile
Array Based Implementation
$>(n-1)$ iterations with $O(n+n)$ every time $\Rightarrow O\left(n^{2}\right)$

Implementation \& Running Time

Dijkstra's Algorithm:
$S=\{ \} ; P Q$ with $d[s]=0$ and $d[v]=$ infinity for $v!=s \longleftarrow$ Maintain in a $P Q$
while $P Q$ is not empty

Add v to S
foreach w in the neighborhood of v
Single update requires $O(\log n)$
endif
endwhile

Priority Queue Based Implementation

> It is easy to think how many times do we have to run, altogether.
Assuming Adjacency lists are used, "for" loop runs in-deg(v) for every v != s.
$>m$ edges, once for every edge $\Rightarrow O(m \log n)$

Dijkstra's Algorithm

Tree of Shortest paths from s to any u:
Take an array parent P of size n :
$>$ Set $P[u]=v$, when $d[u]$ gets updated due to v.
$>$ While setting $u(u \neq s)$ as Explored (ExtratMin from PQ),
add the edge (u,parent[u]) to the tree.
Space Requirements:

- A system of shortest paths from s is saved in $O(n)$ space.
- Applying Dijkstra's algorithm to every source node, we get a system of shortest paths from every node to every other node, stored in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space, which is optimal.

All edge lengths are EQUAL:
> Breadth First Search.

Dijkstra's Algorithm

Dijkstra's Algorithm design technique?
$>$ Greedy?
> Next node is chosen based on a greedy rule.
>Dynamic Programming?
> We consider optimal shortest path for subpaths from s-t.

- Design techniques are not RIGID classification of efficient algorithms.
- Take them as general design principles.
> Single algorithm can combine several.

Network Flow Algorithms

Some slides' contents adapted form:
http://homes.cs.washington.edu/~anderson/iucee/Slides_421_06/Lecture22_23.pp \dagger
http://elderlab.yorku.ca/~elder/teaching/cse3101/lectures/07\ Network\ Flow\ Algorithms.ppt

Flow Networks

Internet

Telephone

Highways
Rail

Electrical Power
Gas
Water

Flows

-Warmup:

- A network of pipes
- pipes carry flow
- Each pipe has a maximum capacity
- A source in which flow arrives
- A sink at which flow leaves
- Only the positive flows in the flow network.

Flows

Flow network.

- Abstraction for material flowing through the edges.
- $G=(V, E)=$ directed graph, no parallel edges.
- Two distinguished nodes:
- $s=$ source, in-degree(s) $=0$.

- $\dagger=$ sink, out-degree $(\dagger)=0$.
- $c(e)$ or $c(u, v)$: capacity of edge $e(u, v)$.
- $f(e)$ or $f(u, v)$: flow through edge e (u,v).

Flows

Def. An $s-\dagger$ flow is a function that satisfies:

- For each $e \in \mathrm{E}: \quad 0 \leq f(e) \leq c(e) \quad$ [capacity]
- For each $v \in \mathrm{~V}-\{\mathrm{s}, \dagger\}$: $\sum_{\text {ein tov } v} f(e)=\sum_{\text {eout of } v} f(e) \quad$ [conservation]

Def. The value of a flow f is: $\operatorname{val}(f)=\sum_{e \text { out of } s} f(e)=\sum_{e \text { in to } t} f(e)$.

Flows

Def. An $s-\dagger$ flow is a function that satisfies:

- For each $e \in \mathrm{E}: \quad 0 \leq f(e) \leq c(e) \quad$ [capacity]
- For each $v \in \mathrm{~V}-\{\mathrm{s}, \mathrm{\dagger}\}: \sum_{e \text { in to } v} f(e)=\sum_{\text {eout of } v} f(e) \quad$ [conservation] Def. The value of a flow f is: $\operatorname{val}(f)=\sum_{e \text { out of } s} f(e)=\sum_{e \text { in to } t} f(e)$. the total flow leaving $s=$ the total flow arriving in t.

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-† path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value $=0$

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s - \dagger path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value $=20$

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s - \dagger path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.
local optimality \nRightarrow global optimality

Residual Graph

Original edge: $e=(u, v) \in E$.

- Flow f(e), capacity c(e).

Residual edge.
. "Undo" flow sent.

- $e=(u, v)$ and $e^{R}=(v, u)$.
- Residual capacity:

$$
c_{f}(e)= \begin{cases}c(e)-f(e) & \text { if } e \in E \\ f(e) & \text { if } e^{R} \in E\end{cases}
$$

Residual graph: $G_{f}=\left(V, E_{f}\right)$.

- Residual edges with positive residual capacity.
- $E_{f}=\{e: f(e)<c(e)\} \cup\left\{e^{R}: f(e)>0\right\}$.

Example of Residual Graph

Graph G $=(V, E)$

flow

Residual Graph $G_{f}=\left(V, E_{f}\right)$ wrt the flow f, whose value is 5 here
$P=$ any simple directed $s-t$ path in G_{f}.

Computing Max Flow

Correcting the Greed: Ford-Fulkerson algorithm

- Start with $f(e)=0$ for all edge $e \in E$.
- Construct residual graph G_{f} (in first iteration it is same as G)
- Find an s-t augmenting path P in G_{f} with capacity $b>0$
- Augment flow in G by b
- If $e=(u, v)$ is a forward edge then increase $f(e)$ in G by b

Else (u, v) is a backward edge, and let $e=(v, u)$ be in G decrease $f(e)$ in G by b

- Repeat until you get stuck.

Example

G at some intermediate step.
Flow achieved is 19

Residual Graph has P with $b=4$

No more augmenting s-† paths \rightarrow max flow attained.

$\operatorname{Val}(f)=23$

Stuck, no P possible

Example

G at some intermediate step.
Flow achieved is 19

Residual Graph has P with $b=4$

How to verify the claim: No more augmenting s-t paths $\rightarrow \max$ flow attained.

$\operatorname{Val}(f)=23$

Stuck, no P possible Answer lies in: Cut

Cuts of Flow Networks

A cut (S, T) of a flow network is a partition of V into S and $T=V-S$ such that $s \in S$ and $t \in T$.

The Capacity of a Cut (S, T)

Maximum possible flow through the cut(S, T):
Sum of capacities $c(u, v)$, where $u \in S$ and $v \in T$ $c(S, T)=12+14=26$

The Net Flow through a Cut (S, T)

$$
f(S, T)=\sum_{u \in S, v \in T} f(u, v)-\sum_{v \in T, u \in S} f(v, u)
$$

Net flow through a cut = Flow out - Flow in $f(S, T)=12+11-4=19$

Bounding the Network Flow

The value of any flow f in a flow network G is bounded from above by the capacity of any cut(S, T) of G.
> Follows from Capacity constraint

Net Flow of a Network

The net flow value across any $\operatorname{cut}(S, T)$ is the same and equal to the flow value of the network.
> Follows from Conservation constraint

Min-Cut Problem

Capacity of the cut
= maximum possible flow through the cut
$=12+7+4=23$

- The network has a capacity of at most 23.
- Here, the network does have a capacity of 23 , because this is a minimum cut.
- How to find a cut(S, T) of minimum capacity?

Example: Max-Flow Min-Cut

Flow Network Resulting Flow $=4$

Example: Max-Flow Min-Cut

Example: Max-Flow Min-Cut

Flow Network

Resulting Flow = 11

Residual Network

Flow Network

Resulting Flow $=19$

Example: Max-Flow Min-Cut

Flow Network

Resulting Flow = 19

Residual Network

Resulting Flow = 23

Example: Max-Flow Min-Cut

Max-Flow Min-Cut Theorem

Let f is a flow in a flow network $G=(V, E)$, with source s and sink t :

1. Since val $(f) \leq c(S, T)$ for all cuts of (S, T) where $s \in S$ and $t \in T$. If $\operatorname{val}(f)=c(S, T)$ then $c(S, T)$ must be the min-cut of G.
2. This implies that f is a maximum flow of G.
3. This implies that G_{f} contains no augmenting paths.
> If there were augmenting paths this would contradict that we found the maximum flow of G
$1 \rightarrow 2 \rightarrow 3 \rightarrow 1$... and from $2 \rightarrow 3$ we have that the Ford Fulkerson method finds the maximum flow if the residual graph has no augmenting paths.

Hence, Max-flow min-cut theorem:
max-flow = min-cut.

Max-Flow $=$ Min-Cut

How to find out the min-cut:
When Ford-Fulkerson stops, no directed s-t paths exists in G_{f}
$>S=$ all v such that $s-v$ path exists in G_{f}
> $\mathrm{T}=\mathrm{V} \backslash \mathrm{S}$
Clearly (S, T) is a cut.
It is also minimum because:
For all $(u, v) \in G, u \in S$ and $v \in T$.
$\Rightarrow f(e)=c_{e}$
> All available capacity is used.
For all $(v, u) \in G, v \in T$ and $u \in S$.

$>f(e)=0$

By the conservation constraint:
The net flow across any cut(S, T) is the same and equal to the flow of the network.

$\Rightarrow \operatorname{val}(f)=C(S, T)$.

Analysis

Ford-Fulkerson's Max-Flow

Initially $f(e)=0$ for all e in $G\} O(m)$
く-While there is an s-t path in the residual graph \bar{G}_{-}^{-}-こ,
Let P be a simple s - t path in G_{f}
$f^{\prime}=\operatorname{augment}(f, P)$
Update f to be f^{\prime}
Update the residual graph G_{f} to be $G_{f^{\prime}}$
Endwhile
Return f

Analysis

- Let $C=\sum_{e o u t \text { of } s} f(e)$.
- Then the time can be written as: $O(m C)$
$>$ In worst case, each iteration of the while loop increments flow by 1
- Note that this running time is not polynomial in input size due to similar reasons as Knapsack
- Curious to know more?
> More in Algorithms Adv. Course.

Multiple Sources Network

We have several sources and several targets.
Want to maximize the total flow from all sources to all targets. Reduce to max-flow by creating a super-source and a super-sink:

An Application of Max Flow:

Maximum Bipartite Matching

- A bipartite graph is a graph $G=(V, E)$ in which V can be divided into two parts L and R such that every edge in E is between a vertex in L and a vertex in R.
- e.g. vertices in L represent skilled workers and vertices in R represent jobs. An edge connects workers to jobs they can perform.

A matching in a graph is a subset M of E, such that for all vertices v in V, at most one edge of M is incident on v.

L
R

L
R

A maximum matching is a matching of maximum cardinality (maximum number of edges).

A Maximum Matching

No matching of cardinality 4, because only one of v and u can be matched.

In the workers-jobs example a max-matching provides work for as many people as possible.

Solving the Maximum Bipartite Matching Problem

- Reduce the maximum bipartite matching problem on graph G to the max-flow problem on a corresponding flow network \mathcal{G}^{\prime}.
> Solve using Ford-Fulkerson method.

Corresponding Flow Network

To form the corresponding flow network \mathcal{G}^{\prime} of the bipartite graph \mathcal{G} :

- Add a source vertex s and edges from s to L.
- Direct the edges in E from L to R.
- Add a sink vertex \dagger and edges from R to \dagger.
- Assign a capacity of 1 to all edges.

Claim: max-flow in \mathcal{G}^{\prime} corresponds to a max-bipartite-matching on \mathcal{G}.

Solving Bipartite Matching as Max Flow

Let $G=(V, E)$ be a bipartite graph with vertex partition $V=L \cup R$.
Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be its corresponding flow network.

If M is a matching in G,
then there is an integer-valued flow f in G^{\prime} with value $|f|=|M|$.

Conversely if f is an integer-valued flow in G^{\prime}, then there is a matching M in G with cardinality $|M|=|f|$.

Thus $\max |M|=\max$ (integer $|f|$)

Does this mean that $\max |f|=\max |M|$?

Problem: we haven't shown that the max flow $f(u, v)$ is necessarily integer-valued.

Integrality Theorem

If the capacity function c takes on only integral values, then:

1. The maximum flow f produced by the Ford-Fulkerson method has the property that $|\mathrm{f}|$ is integer-valued.
2. For all vertices u and v the value $f(u, v)$ of the flow is an integer.

So, $\max |M|=\max |f|$

Running Time:
Remember: $C=\sum_{e o u t \text { of } s} f(e)$.

Here C is at most n, Hence $O(m C)$ becomes $O(m n)$

Example

Conclusion

> Network flow algorithms allow us to find the maximum bipartite matching fairly easily.
> Similar techniques are applicable in other combinatorial design problems.

- Remark about Exercise 3 from week 2:
> "witches watching watches"
> It was asked to provide a counterexample for the given greedy algorithm
> Bipartite Matching exactly solves the same
\checkmark Now you have an algorithm for "witches watching watches"

Wednesday, LV 7 (2016-10-12)

DP Shortest Path

Given a grid with obstacles, we wish to find the shortest path from the upper left corner $(0,0)$ to (n, n).

Shortest path problem in a graph

One way to solve the problem is by constructing an undirected graph $G=(\mathrm{V}, \mathrm{E})$.
Let $\mathrm{V}=\{(\mathrm{i}, \mathrm{j}) \mid \mathrm{i}, \mathrm{j}$ integers, $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{j} \leq \mathrm{n}\}$ and $\mathrm{E}=\mathrm{A} \cup \mathrm{D}$ where
$\mathrm{A}=\left\{\left((\mathrm{i}, \mathrm{j})\left(\mathrm{i}^{\prime}, \mathrm{j}^{\prime}\right)\right)| | \mathrm{i}-\mathrm{i}^{\prime}\left|+\left|\mathrm{j}-\mathrm{j}^{\prime}\right|=1\right\}\right.$ is the set of vertical/horizontal edges and
$\mathrm{U}=\left\{\left((\mathrm{i}, \mathrm{j})\left(\mathrm{i}^{\prime}, \mathrm{j}^{\prime}\right)\right)| | \mathrm{i}-\mathrm{i}^{\prime}|=1 \wedge| \mathrm{j}-\mathrm{j}^{\prime} \mid=1\right\}$ is the set of diagonal edges
Let l_{e} be the length of an edge:
$l_{e}:=1$ if $\mathrm{e} \in \mathrm{A}$
$l_{e}:=\sqrt{2}$ if $\mathrm{e} \in \mathrm{D}$ and square (i, j) is not blocked
$l_{e}:=\infty$ if $\mathrm{e} \in \mathrm{D}$ and square (i, j) is blocked
The paths in G are exactly the path in the grid.
The graph construction needs $\mathcal{O}\left(n^{2}\right)$ time. G has $\mathcal{O}\left(n^{2}\right)$ nodes and $\mathcal{O}\left(n^{2}\right)$ edges.
If we apply Dijkstra's algorithm we can solve this shortest path problem in $\mathcal{O}\left(n^{2} * \log (n)\right)$. However, if we design the graph a bit more cleverly, we can do better. If we create a directed graph and do not add the edges that goes backwards (it will never be beneficial to go backwards in a shortest path). We have then created a DAG and shortest paths on DAGs are quicker $(\mathcal{O}(n))$.

Using DP

In the exam problem a function was already given: $O P T(i, j):=$ length of a shortest path from $(0,0)$ to (i, j). (If such a function is not given, it is important that you write this yourself!)

Let $\mathrm{b}(\mathrm{i}, \mathrm{j})$ denote a blocked square, and $\mathrm{b}(\mathrm{i}, \mathrm{j}):= \begin{cases}\infty & \text { square }(\mathrm{i}, \mathrm{j}) \text { is blocked } \\ \sqrt{2} & \text { else }\end{cases}$
$\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\min \begin{cases}\operatorname{OPT}(\mathrm{i}-1, \mathrm{j})+1 & \text { horizontal } \\ \operatorname{OPT}(\mathrm{i}, \mathrm{j}-1)+1 & \text { vertical } \\ \operatorname{OPT}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{b}(\mathrm{i}, \mathrm{j}) & \text { diagonal }\end{cases}$

Implementation, not required for the exam but we need to argue the time complexity so it's convenient! Also, you should always use for loops and memoization instead of recursive calls.

```
for i = 0 to n:
    OPT(i,0)= i
for j = 0 to n:
    OPT(0,j)= j
for i = 1 to n:
    for j = 1 to n:
        OPT(i, j ) = ...
```

The solution (the path and it's length) is given by backtracing!

Graphic TSP

Given as input an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with equal-length edges (distance between two nodes, u and $v, \equiv \mathrm{~d}(\mathrm{u}, \mathrm{v})$) we want to find a shortest tour that visits every node at least once and starts and ends in the same node.

We write the problem as a decision problem: Given a graph G and a number t we ask: "Is there a tour of length at most t?".

Hamiltonian Cycle

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an undirected graph and the HCP asks if there is a tour that visits every node exactly once, and starts and ends in the same node.

HCP is a known $\mathcal{N} \mathcal{P C}$.

Graphic $\mathbf{T S P} \in \mathcal{N} \mathcal{P} ?$

Given a tour T, can weverify that:

- T contains all nodes
- Consecutive nodes on T are joined by edges
- The total length of T is at most t
in polynomial time?
Yes we can!

Hamiltonian Cycle \leq_{p} Graphic TSP

A Hamiltonian Cycle is a tour of size n (the number of nodes). We want a function f s.t. $\mathrm{f}(\mathrm{G})=(\mathrm{H}, \mathrm{t})$ s.t. G has a Hamiltonian Cycle $\Leftrightarrow \mathrm{H}$ has a tour of length at most t . In our instance $\mathrm{H}:=\mathrm{G}$ and $\mathrm{t}:=\mathrm{n}$.

Graphic TSC $\in \mathcal{N} \mathcal{P}, \mathrm{HCP}$ is $\mathcal{N} \mathcal{P} \mathcal{C}$ and $\mathrm{HCP} \leq_{p}$ Graphic TSP, hence Graphic TSP is $\mathcal{N P} \mathcal{P C}$!

Outlook

