
Wednesday, LV 1 (2016-08-31)

September 13, 2016

1 Info
“Problems” are problems in the sence of algorithmical problems, not exercises
one should “do”.

Hand in exercises will be given weekly, these are voluntary but strongly rec-
ommended. (The first hand in exercise is due Wed. 2016-09-07.)

Exercise sessions will be given and they will be concentrated on exercises from
the textbook. All three slots given are identica l and you are asked to sign up
on a doodle to spread the attendence.

2 Problem
An instance is a concrete input of logic.

Given: x,y (integers)
Compute: x+y and x*y

Which is the easier operation?
Most people would probably say additon, but in what sense is that?

3 Algorithm
• An instruction: How to solve a problem (it must work for all instances of

a problem).

• Unambiguous

• The work is split into small, simple, steps.

Myth One might think that developing algorithms is programming, but this
is wrong. An algorithm is not a program.

1

4 Time Complexity
Time complexity is the limiting factor of algorithms. You can also think about
the space required, but the time limit is harder, hence we will concentrate on
time complexity.

The time complexity of an algorithm is its running time for every instance.
t: X →R+ (where X is a set of instances). However, this is far to complicated.

4.1 Worst case analysis: O(n)
t:N→ R+

maximum running time for instances of length n. The “time” is not counted in
seconds, but in elementary operations. We also ignore constant factors.

Definition Let t and f be two functions:, then t is O(f) if: ∃c > 0, n0 : ∀n >
n0 : t(n) ≤ c ∗ f(n)

4.1.1 Examples

x,y: integers with n digits.

We can compute x+y in O(n) time. (We need constant time to add two
digits and we do this n times.) The reason is that the result depends on every
digit in the input. Unlike a binary search of a sorted array, which we can search
in O(log(n)) time. (More about this later I guess.)

We can add m integers with n digits in O(mn), but this is hard to prove!
Note that the result of adding a column could be as bad as 9*m. This carry
over constant has O(log(m)) digits, so in the worst case scenario we get an
addition of O(log(m)) operations mer digit we want to calculate. This would
yield: O(mn ∗ log(m)).

We can compute x*y in O(n²) time. This is not optimal, due to the digits
not being completely independent of each other when multiplying. (Take a look
at Big-O Arithmetics in general and Fürers Algorithm in particular.)

4.2 Properties of O
• O(f(n) + g(n)) is the same as O(max{f(n), g(n)}).

• If: f monotone increasing function, c>0 (constant), a>1 (constant) ⇒
f(n)c is O(af(n))

• O(logan)= O(logbn) because they differ only by a constant factor.

2

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/F%C3%BCrer%27s_algorithm

Monday, LV 2 (2016-09-05)

1 Interval Scheduling
Given a set of n intervals [si, fi], i=1, ..., n, on the real axis. Select a subset X
of these intervals, as many as possible, which are pairwise disjoint.

An exhaustive solution (check everything) would take O(n ∗ 2n) time.

However, if we put a certain interval x=[si, fi] in X, we can remove all intervals
intersecting with x.

1.1 Attempt 1
Put [si, fi] with smallest si in X.

This might seem reasonable, but it is a bad attempt. Visualize a very long
interval [1, 8] and two shorter [2, 3], [4,5], we immediatley see that it is better
to choose the two shorter intervals, but our rule would fail to do this. Attempt
1 does not take into account, the length of the intervals.

1.2 Attempt 2
Put [si, fi] with smallest fi - si in X.

Visualize [1,5], [4,7], [6, 10] and you will see that we should have picked the
two longer intervals. However, we picked the shortest – and only the shortest –
interval.

1.3 Attempt 3
Put [si, fi] in X which intersects the smallest number of intervals. (See P 117,
Fig 4.1 in the book for counter example.)

1.4 Attempt 4 (Earliest End First, EEF)
Sort the intervals s.t. f1 < f2 < ... < fn. Put [si, fi] with smallest fi in X. Then
remove all intervals intersecting with x. Iterate.

1

1.4.1 Claim

There exists some optimal solution, Y, containing [s1, f1]=x.

Claim ⇒ EEF correct. This is because, after picking the first interval (and
therefore removing its intersecting intervals), picking the next interval is simply
a matter of applying the rule one more time, and so on. Proof by induction!

1.4.2 Proof of Claim

Assume: Y is optimal, x /∈ Y.

x’s fi is somewhere within the interval y’s [si, fi].

x intersects exactly one y ∈ Y .

(Y \ {y}) ∪ {x} is another optimal solution.

QED.

1.5 EEF Running time
EEF runs in O(n2) time. We can however make it faster by:

• Represent each interval by two copies.

• Put them into two double linked lists.

– One of the lists is sorted by ascending fi.

– The other list is sorted by ascending si.

• Connect copies by pointers. (If you find an interval in one list, you find it
in the other too.)

• Find smallest fi in constant time (heap?).

• Intersecting intervals [sj , fj] are those with sj< fi.

This leads us to using O(n) time in total for the EEF. We do however also need
to sort the list. This could be done in O(n ∗ log(n)), but we would just say:
O(n)+ Time(sorting).

2 Interval partitioning
Given a set of n intervals [si, fi], i=1, ..., n, on the real axis. Partition the set
of intervals into the smallest possible number d of subsets X1, X2, ..., Xd, each
consisting of pairwise disjoint intervals.

2

2.1 Algorithm
Sort the intervals such that s1< s2< ... < sn.
for all i: Xi = ∅
for all j=1 to n
put [sj , fj] in Xi where i is the smallest index s.t. [sj ,fj] does not intersect other
results in Xi.

2.2 Proof
d := max number of intervals that share a point.
Every solution requiers at least d sets Xi=∅.
The algorithm uses only d sets (graphical proof, see Page 123 in the book).

3

Wednesday, LV 2 (2016-09-07)

1 Weigthed Interval Scheduling
Given: a set of n intervals [si, fi], i = 1, ..., n, on the real axis. Every interval
has also a positive weight vi. The intervals are sorted such that the interval
that ends first comes first. No intervals end, or start, at the same time.
Goal: Select a subset X of these intervals which are pairwise disjoint and have
maximum total weight.

1.1 EEF Fails
The algorithm we showed in the previous lecture will not be able to solve this
issue. AAMOF the interval scheduling problem is a special case of the weigthed
interval scheduling problem. (I.e. where vi is the same for all intervals.) Hence,
the WIS is a harder problem to solve. In order to show that the EEF fails
we can look at two intervals: n1=[1,3,1] and n2=[2,4,10] where ni=[start, stop,
weigth]. We see that it is not beneficial to pick n1, but EEF would do so since
n1 ends before n2.

1.2 Discard the worse solutions
OPT(j) := max weight achievable by a subset of disjoint intervals from {[s1,f1],
[s2, f2], ..., [sj , fj]}.

In the end we want only OPT(n), but we will use OPT(j) to get there.

We can conclude that: OPT(1) <= OPT(2) <= ... <= OPT(n).

1.2.1 Computing OPT(j)

The key is to use induction on j.

Induction base: OPT(1) = v1

1

Induction step: Consider any fixed j>1. Suppose that all OPT(i), i < j are
already computed.

OPT(j) = max

{
OPT (j − 1) don′t take [sj , fj]

vj +OPT (p(j)) take [sj , fj]

where p(j) := max{i | fi<sj} (auxiliary function)

1.2.2 Time Complexity

We can compute:

• all p(j) in O(n) time (if all fi, sj are sorted)

• all OPT(j) in O(n) time (arithmetic operations with real numbers are
counted as elementary)

This table uses the schedule shown in the book. (P 253, Fig 6.2)

j 1 2 3 4 5 6
OPT(j) 2 4 6 7 8 8

1.2.3 Note about recursion

The formula used is recursive, however that can be dangerous to use (see P
255, Fig 6.3). The tree of subproblems gets really big... This is because we re-
calculate OPT(j) for many js. If we store OPT(j) in an array at position
M[j] we can look there and see if there is already a value for OPT(j)
before we (re-)calculate it.

1.2.4 What about the subset?

When we have obtained OPT(n) we know what the opitmal value will be. How-
ever, we have not kept track of which subset is optimal. Lets take that into
account.

We can store all the intermediate solutions as shown below:

j 1 2 3 4 5 6
OPT(j) 2 4 6 7 8 8
Subset: {1} {2} {1,3} {4} {1,3,5} {1,3,5}

Note that it takes a lot of time. Storing intermediate solutions => O(n2)
time. Oh, oh..

We try another way and ask: “Where did the optimum come from?” The
misstake in the previous way of calculating the subset was that we went from

2

left to right. If we go from right instead...

We ask: Where did 8 come from? 5 or p(6)? It came from 5. Hence, we
can discard 6. We continue and get: (this is hard to write, check the book)

j 1 2 3 4 5 6
OPT(j) 2 4 6 7 8 8
Subset: pick discard pick discard pick discard

Backtracing in order to find the solutions => O(n) time!

1.3 Dynamic Programming
One scheme fits all!

1. Choose parameters that limit the sub-instances (to a polynomial number).

2. Define a recursive function which indicates the opitmal value of the sub-
instances. Be careful to define what the function is supposed to compute.

3. Compute the function without using recursive calls. (Instead, store the
values in an array and check if you have already computed the value.)

4. Do a time analysis. (This should usually be := (size of table)x(time spent
on table entry)=(size)x(constant).)

5. Get the actual solution by backtracing, starting from the final value. Do
not copy all the partial solutions!

Note: You only need to prove the correctness for the recursive function. The
correctness of the method is given by the method itself.

3

Monday, LV 3 (2016-09-12)

1 The Knapsack Problem
Given a set of items, each with a weight and a value, determine the number of
each item to include in a collection so that the total weight is less than or equal
to a given limit and the total value is as large as possible.

weights(sizes): w1, w2, ...
values: v1, v2,...
capacity W: (integers)
Find S ⊆ {1, ..., n} s.t.

∑
i∈S wi ≤W and max

∑
i∈S vi.

j

1.1 Possible Greedy Solution
Sort items s.t. v1

w1
≥ v2

w2
≥ ... ≥ vn

wn
.

Take items it this order, put them in the solution as long as possible.

It turns out this is a pretty bad idea...
Let v1= 10ε, v2=90, w1=ε, w2= 10, W=10

1.2 Subset Sum (A partial Solution)
Given a set (or multiset) of integers, is there a non-empty subset whose sum is
W?

P(j, w) := 1 if some subset of {w1, w2, ..., wn} has sum w.
P(j, w) := 0 otherwise.

Computing the P(j, w)
if j = 0, we take something from the empty set (w is therefore also 0):
∀w > 0: P(0, w) = 0
∀j: P(j, 0) = 1

Induction step
Suppose we have already computed P(i, y) for all i < j, y < w.
P(j, w) = P(j-1, w) ∨ P(j-1, w-wj) P = (don’t take ∨ take wj)

1

1.2.1 Time Complexity

The algorithm runs in: O(n ∗W), which is not polynomial. In the worst case it
could be exponential in the input length. We say that the algorithm is pseudo-
polynomial.

1.2.2 Example Run

w1= 1, w2= 1, w3 = 5, w4= 2, w5 = 2
W = 8

w\j 0 1 2 3 4 5
0 1 1 1 1 1 1
1 0 1 1 1 1 .
2 0 0 1 1 1 .
3 0 0 0 0 1 .
4 0 0 0 0 1 .
5 0 0 0 1 1 .
6 0 0 0 1 1 .
7 0 0 0 1 1 .
8 0 0 0 0 1 .

Back tracing: (4,8) -> (3,6) -> (2,1)

1.3 Subset Sum 2.0
Find a subset of {w1, w2, ..., wn} whose sum is as big as possible, but less than
W. (If we have a knapsack problem where vi= wi, this is it.)

OPT(j, w): The largest number ≤ w, which is the sum of some subset of
{w1,...,wj}.

OPT(j, w) = max

{
OPT (j − 1, w)

wj +OPT (j − 1, w − wj)

1.4 Back To Knapsack
OPT(j, w): The largest value of a subset of {w1,...,wj} with weigth ≤ W.

OPT(0, w) = OPT(j, 0) = 0
OPT(j-1,w-wj) = 0 if w < wj

OPT(j, w) = max

{
OPT (j − 1, w)

vj + OPT (j − 1, w − wj)

2

https://en.wikipedia.org/wiki/Pseudo-polynomial_time
https://en.wikipedia.org/wiki/Pseudo-polynomial_time

2 Sequence Comparison
Given: Two strings A = a1, ..., an and B = b1, ..., bm, where the ai, bj are
characters from a fixed, finite alphabet.

Goal: Transform A into B by a minimum number of edit steps. An edit step
is to insert or delete a character, or to replace a character with another one.

2.1 Example: CREAMY <-> CARAMEL
C - R E A M Y -
C A R - A M E L

We have 4 miss matches.

C R E A M - Y
C A R A M E L

Have 4 miss matches too. (And there are at least two additional solutions
with 4 miss matches.)

2.2 Algorithm
A = a1, ..., an and B = b1, ..., bm.
Align a prefix of the first word, with a prefix of the second word.

a1 ai

b1 bj

OPT(i, j) := min number of miss matches in an alignment of a1,...,ai and
b1,...,bj . We want to acquire OPT(n,m).

2.3 Problem Analysis (and correctness proof)
What can happen to ai?

• It disappears, and a1, ..., ai−1 is alligned with b1, ..., bj .

• a1, ..., ai is alligned with b1, ..., bj (in particular ai -> bj).

• and ai is alligned with a bk that is somwhere between b1 and bj .

3

2.4 Recursive formula

OPT(i, j) = min


OPT (i− 1, j) + 1

OPT (i− 1, j − 1) + δij

OPT (i, j − 1) + 1

where δ =

{
1 ai 6= bj

0 otherwise

min


↓ +1

↘ +δij

→ +1

2.4.1 Example

C R E A M Y
0 1 2 3 4 5 6

C 1 0 1 2 3 4 5
A 2 ↑1 ↖1 2 2 3 4
R 3 2 ↖1 ←↖2 3 3 4
A 4 3 2 2 ↖2 3 4
M 5 4 3 3 3 ↖2 3
E 6 5 4 3 4 ↑3 ↖3
L 7 6 5 4 4 4 ↖↑4

2.5 Time Complexity
O(nm)

4

Wednesday, LV 3 (2016-09-14)

1 Segmentation
Given: A sequence (x1, ..., xn) of items.
Goal: Partition the sequence into segments (xi, ..., xj) so that the sum of f((xi,
..., xj)) of all these segments are maximized/minimized.

Let eij describe the penalty, or the quality score, for the sequence (xi, ...,
xj). Find a segmentation that minimizes the sum of penalties or maximizes
the quality score.

1.1 OPT
Assume that we have already decided a segmentation: 1 j n .

OPT(j) := minimun sum of penalties of all possible segmentations of (x1,...,xj).

OPT(j)=min {eij + OPT(i-1)} (Note: i ≤ j)

1.2 Time Complexity
O(n2), if the eij are already given.

1.3 Alternative Algorithm (for maximize version only)
This is very similar to the weighted interval scheduling problem.

Consider (xi, ..., xj) as an interval with weigth eij . Solve this instance of
weigthed interval scheduling. The process of reducing a problem to another
problem is called “reduction”.

Recall that the running time of WIS is O(n), however n is the number of in-
tervals - in our segmentation problem we have n² possible intervals, hence the
running time is still O(n²).

1

2 Searching - Divide and Conquer
The art of dividing a set into subsets, and solving them recursively.

Given: A sorted set S={s1,..., sn}
Goal: Find x, if x is present in S.

Example, binary search:

search (i , j) :
i f i == j :

r e turn i (x i s l o ca t ed at S [i])
e l s e :
m = (i+j)/2
i f x <= S [m] :

s earch (i ,m)
e l s e :

s earch (m+1, j)

Comparison and arithmetic operations take constant time. Each iteration we
half our n, hence: O(log(n)).

2.1 General running time of recursive DNC algorithms -
Recurrence Equations

T(n) := time for instances of lengt n. Even though we know nothing about T(n)
we can look at the algorithm above and see that:

T(n) = T(n2) + O(1)
T(1) = O(1) (induction base)
It is also enough to consider n as powers of 2. This is because the definition of
O. Consider: (bn)d = bdnd = O(nd)
T(n) = O(log(n))

3 Skyline
Given: n rectangles, having their bottom lines on a fixed horizontal line.
Goal: Output the area covered by all these rectangles (in other words: their
union), or just its upper contour.

Instance: Described by (li, ri, hi), i=1, ..., n (l is the left x-value, r is the
right x-value and h is the height of the rectangle)

Output: Described by the sequence of heights and points on the x-axis where
the height changes.

2

Approach 1: Insert rectangles one by one and update the skyline. It takes
us O(j) time to insert the jth rectangle leading us to a total runtime of O(n2).
T(n) = T(n-1) + O(n).

The first approach is bad because we spend a lot of time in order to insert
only one new rectangle. We could use this time more efficiently using Divide
and Conqure.

Approach 2:

1. Divide the instance arbitrarily in two instances with n
2 rectangles.

2. Compute their skylines recursively.

3. Merge these skylines in linear time.

T(n) = 2T(n2) + O(n) = O(n log(n))

4 Solving recurrence equations (Master Theorem)
Let: a and b be integers, a ≥ 1, b ≥ 2.
Let: c and k be reals, c > 0, k ≥ 0.
Consider n = bm

T(1) = c
T(n) = aT(nb) + cnk

T(n) = a2*T(n
b2) + ca(nb)

k + cnk
T(n) = a3*T(n

b3) + ca2(n
b2)

k + ca(nb)
k + cnk

....
T(n) = c

∑m
i=0 a

(m−i)
(

n
b(m−i)

)k
Note: a(m−i)(n

b(m−i))
k = a(m−i)bik = am(b

k

a)

T(n) = cam
∑m

i=0

(
bk

a

)i
a > bk: T(n) = O(am) = O(alogbn) = O(nlogba)
The base of the log is important due to being in the exponant.

a = bk: T(n) = (mam) = O(nlogba ∗ log n) = O(nklog n)

a < bk: T(n) = O(am(b
k

a)m) = O(bkm) = O(nk)

3

Algorithms: Lecture 6
Chalmers University of Technology

Recap

• Greedy & Dynamic Programming
extend solutions from smaller sub-instances incrementally to larger sub-

instances, up to the full instance.

• Divide & Conquer
follows the pattern of reducing a given problem to smaller instances of itself

BUT

it makes jumps rather than incremental steps.

3

Recap

• Divide-and-conquer
• Split problem instance into a few significantly smaller sub-instances.

• Sub-instances are solved, independently, in the same way (recursion).

• Combine partial solutions to sub-instances into an overall solution.

• Most common usage
• Break up problem instance of size n into two equal parts of size ½n.

• Solve two parts recursively.

• Combine two solutions into overall solution in linear time.

4

Today’s Lecture

• Important technique for Searching & Sorting
• Binary Search O(log n) (last lecture)

• Brute force Sorting, e.g., Bubble sort : O(n2).

• Divide-and-conquer: O(n log n).

Bubble Sort

• Scan the list of elements from left to right
whenever two neighbored elements are in the wrong order, swap them.

http://www.csit.parkland.edu/~mbrandyberry/CS1Java/images/Lesson28/BubbleSortInteration.jpg

Bubble Sort

• Every pass puts one elements
to its proper place &
reduces the instance size by 1
 n(n-1)/2
 O(n2)

Bubble Sort

• In place: Needs only one array of size n for everything, except,
possibly a few memory units.

• Best: In the first pass, if we don't have to make any swaps, that means
that the array is sorted already.

• Worst: if many elements are far from their proper places(reverse
order), because the algorithm moves them only step by step.
Insertion Sort to overcome

Insertion Sort

• After k rounds of Insertion Sort, the
first k elements (k = 1,…,n) are
sorted.

• To insert the (k + 1)st element we
search for the correct position, using
binary search.
 O(n log n)?
 we may be forced to move O(k)

elements in the k-th round,
giving again an overall
time complexity of O(n2).

Insertion Sort

• Idea: We can avoid moving the elements
 Insert an element in O(1) time at a desired position using doubly linked list.

• But, how do we apply Binary Search without indices?
 We have to apply linear search, and once again: O(n2) for all n rounds.

• However, O(n log n) sorting algorithms are known, as we already know
Divide-and-conquer

10

Mergesort

• How it works:
• arbitrary split the set into two halves

• recursively sort the two halves separately

• merge the two sorted halves

• Merging the two sorted halves involves comparing the elements to
each other
scan both ordered sequences simultaneously and always move the currently

smallest element to the next position in the result sequence, implies O(n)

11

Mergesort Example

1 32 42 5 66

2 64 5 1 2 63

5 2 64 1 3 62

5 2 64

2 5 64

1 3

1 3

62

62

5 62 4

5 62 14 3 62

1 3 62

13

Time Complexity for Mergesort

Recurrence Relation:

• Let T(n) be worst case time on a sequence of n elements

• If n = 1, then T(n) = O(1) (constant)

• If n > 1, then T(n) = 2 T(n/2) + O(n)
• two sub-problems of size n/2 each that are solved recursively
• O(n) time to do the merge

• Solving the recurrence gives T(n) = O(n log n)

• Remember general result from the Master Theorem
 T(n) = aT(n/b) + cnk , and for a= bk it gives O(nk log n)
For Mergesort, we have a=2, b=2 and k= 1.

14

Caveat

• Simple Structure but not the fastest sorting algorithm in practice
• Too many copy operations (In every merging phase on every recursion level we have to move

all elements of the merged subsets into a new array.)

• NOT in place
• Additional memory required, while n could be very large in practice.

• Other alternatives with O(n log n) time
• Different hidden constants factors
• Hard to analyze theoretically
• runtime experiments can figure out what is really faster.

• Remark: our Skyline algorithm from the previous lecture implicitly uses Mergesort to sort
all endpoints of the rectangles.

15

Quicksort

• How it works:
• choose one element to be the pivot/ splitter, called p

• put all the elements < p, and those > p in two different subsets

• recursively sort the two subsets and concatenate putting p in between

• In place

• Conquer phase trivial

• Implementation of Divide makes quick sort - quick

17

Time Complexity for Quicksort

• Worst case: the splitter is always the minimum or maximum element
of the set, O(n2) is needed.

• Only careful selection of the splitter can guarantee the better bound.

• If the splitters would exactly halve the sets on every recursion level,
we have our standard recursion:
T(n) = 2 T(n/2) + O(n)

With solution: T(n) = O(n log n)

18

Ideal Splitter for Quicksort

• Rank of an element: the position of this element if the set were already sorted.

• Median: Element with rank n/2

• Computing Median?
• Sort and read off the element of rank n/2

• Stupid idea… sorting is the actual problem for which we need to find out Median.

• A splitter is selected at random!
• the worst case (rank nearly 1 or n) is very unlikely.

• The splitters will mostly have ranks in the middle.

 reasonably balanced partitions in two sets.

 O(n log n) time is needed on expectation.

• In practice, chose three random elements and take their median as the splitter.

19

Center of a Point Set on the Line

Distance: Walking or driving distance along the street, not the Euclidean distance.

Median of the given coordinates, not the average.

20

Selection and Median Finding

• Given: A set of n elements, where an order relation is defined, and an
integer k.

• Goal: Output the element of rank k, that is, the kth smallest element.

• Median: Special case in Selection problem, k := n/2
often better suited as a “typical" value than the average, because it is robust against

outliers.

• Wealth in a population
Mean vs. Median

21

Algorithm for Selection and Median Finding

• Choose: a random splitter s and compare all elements to s in O(n) time to
get rank r of s.

• Decide:

• If r > k then throw out s and all elements larger than s. REPEAT

• If r < k then throw out s and all elements smaller than s, and set k := k-r REPEAT

• If r = k then return s. STOP

• Time Complexity
• Given the splitters are always in the middle: T(n) = T(n/2) + O(n)

T(n) = aT(n/b) + cnk , and for a < bk it gives O(nk)

We have a=1, b=2 and k= 1, therefore we get: O(n)

O(n) is expected time, worst case could still be O(n2)

Fast Algorithm: Intuition is that Selection needs much less information than Sorting.

22

Algorithm for Selection and Median Finding

• A deterministic divide-and-conquer, with O(n) time exists
Complicated

More importantly, the hidden constant in O(n) is large

Practically, random splitter algorithm is better

23

Information Flow and Optimal Time Bounds

• One of our primary goals is to make algorithms as fast as possible.
How good are our time bounds for sorting and searching algorithms?

• Searching:
• Find a specific element in an ordered set of size n

• Comparisons counted as the elementary operations

• Binary Search: log2 n comparisons of elements

• Claim: No other algorithm with comparisons as elementary operations can
have a better worst-case bound.
Claim holds due to the information-theoretic argument

24

Information Flow and Optimal Time Bounds

• Binary Search: log2 n comparisons of elements

• Claim: No other algorithm with comparisons as elementary operations can
have a better worst-case bound.
Claim holds due to the information-theoretic argument

• How much information do we gain from our elementary operation?
Binary Answer (“smaller” or “larger”), splitting the set of possible results in two subsets for

which either of the answers is true.

worst case: the answer is true for the larger subset, always

candidate solutions are reduced by a factor at most 2

n possible solutions in the beginning, any algorithm needs at least log2 n comparisons in the
worst case.

• such arguments are used to define the lower bound on the execution of a
computation based on the rate at which information can be accumulated.

25

Information Flow and Optimal Time Bounds

• Sorting: We have O(n log2 n) algorithms.

• Claim: No other algorithm with comparisons as elementary operations can
have a better worst-case bound.
• The n elements can be ordered in n! possible ways, and only one of them is the

correct order

• Claim holds due to a similar reasoning as for Searching
Any sorting algorithm can be forced to use log2 n! comparisons

Calculation shows that log2 n! is n log2 n subject to a constant factor

26

Information Flow and Optimal Time Bounds

• Selection Problem: O(n)

• Reasoning for Searching does not apply here
• O (log2 n) would be a very poor lower bound

• O(n) is optimal
• No order known before hand, ALL the n elements needs to be read

• Every change in the instance can change the result

27

Information Flow and Optimal Time Bounds

• Faster Algorithms for special cases:

• Bucket Sort: O(m + n)
n elements come from a fixed range of m different numbers.

• O(n) sorting in lexicographic order
• Words defined over a fixed alphabet

• Total length of the given words: n

• Do these two results contradict?
• NO!

• ?

• Because…

Algorithms: Lecture 7
Chalmers University of Technology

Today’s Lecture

Divide & Conquer
Counting Inversions
Closest Pair of Points
Multiplication of large integers

Intro to the forthcoming problems
Graphs: Basic Definitions, Applications and Interesting Problems

Counting Inversions

http://www.bogotobogo.com/Algorithms/images/mergesort/inversion_counting_mergesort.png

Counting Inversions

4

Given: a sequence (a1, … , an) of elements where an order relation < is defined.
Goal: Count the inversions in this sequence.

An inversion is a pair of elements where i < j but ai > aj.

Find inversions in (2,4,1,3,5)

Assume there is a sequence (1, 2, 3, … , n), thus the given sequence is a permutation of it.

What is it:

“degree of unsortedness” of a given sequence.

“Dissimilarity” of two sequences containing the same elements but in different order.

RANKING:

Music site tries to match your song preferences with others.

 You rank n songs.

 Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

 My rank: 1, 2, …, n.

 Your rank: a1, a2, …, an.

 Songs i and j inverted if i < j, but ai > aj.

Brute force is Trivial: check all O(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions

3-2, 4-2

5

Counting Inversions: Divide-and-Conquer

Due to the vague similarity with Sorting, Divide-and-conquer should be applicable

 split the sequence into two equal halves, A and B.

 recursively count inversions in both A and B separately.

 count inversions between A and B, and return sum of the three quantities.

 T(n) = 2T(n / 2) + ?

 Need to replace ? with O(n) to make it better than the Brute Force.

 Sorting the sequence while counting inversions?

– Can this help? OR Stupid idea as in Median Finding?

 Sorting AND Counting Inversions Simultaneously… Does it sound good?

– Challenge: merge two sorted sequences A and B, and simultaneously count the inversions

between A and B, still everything in O(n) time

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 Total = 5 + 8 + 9 = 22.

6

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Merge and Count

Counting A-B inversions
 Assume both A and B are sorted.

 Proceed as in the Mergesort

– While merging whenever the next element copied into the merged sequence is from B, this

element has inversions with exactly those elements of A not visited yet.

T(n) = 2T(n / 2) + O(n) implies O(n log n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

6 3 2 2 0 0

7

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

auxiliary array

Total:

i = 6

8

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

i = 6

two sorted halves

2 auxiliary array

Total: 6

6

9

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

2 auxiliary array

i = 6

Total: 6

6

10

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 6

Total: 6

6

11

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 5

Total: 6

6

12

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 5

Total: 6

6

13

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 4

Total: 6

6

14

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 4

Total: 6

6

15

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 3

Total: 6

6

16

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total: 6 + 3

6 3

17

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total: 6 + 3

6 3

18

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 3

Total: 6 + 3

6 3

19

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 2

Total: 6 + 3

6 3

20

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total: 6 + 3 + 2

6 3 2

21

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total: 6 + 3 + 2

6 3 2

22

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

23

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

24

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

25

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 1

Total: 6 + 3 + 2 + 2

6 3 2 2

26

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 1

Total: 6 + 3 + 2 + 2

6 3 2 2

27

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2

first half exhausted

6 3 2 2

28

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

29

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

30

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0

6 3 2 2 0 0

31

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

6 3 2 2 0 0

32

Closest Pair of Points

Closest Pair of Points

Given: Set of n points given as Cartesian coordinates in the plane

Goal: Find a pair of points with minimum distance.

Fundamental geometric primitive.

 Graphics, computer vision, geographic information systems, molecular modeling, air traffic

control.

Brute force: Check all pairs of points p and q with O(n2) comparisons.

Our aim: Using Divide and Conquer, T(n) = 2T(n / 2) + O(n) to get to O(n log n)

34

Closest Pair of Points

How it works:

Draw vertical line L so that roughly ½n points on each side.

Points sorted by their x-coordinate

Take the median z of all x-values and put all points with coordinate x < z and x > z,

respectively in two sets, S1 and S2

Compute the closest pairs in both S1 and S2 recursively.

L

35

Why sorting? find median directly in O(n)

Closest Pair of Points

How it works:

Draw vertical line L so that roughly ½n points on each side.

Points sorted by their x-coordinate

Take the median z of all x-values and put all points with coordinate x < z and x > z,

respectively in two sets, S1 and S2

Compute the closest pairs in both S1 and S2 recursively.

36

Why sorting? find median directly in O(n)

12

21

L

Closest Pair of Points

How it works:

Draw vertical line L so that roughly ½n points on each side.

Points sorted by their x-coordinate

Take the median z of all x-values and put all points with coordinate x < z and x > z,

respectively in two sets, S1 and S2

Compute the closest pairs in both S1 and S2 recursively.

Compute closest pairs where one point is in S1 while the other in S2 ???

37

Why sorting? find median directly in O(n)

12

21

L

Closest Pair of Points

Let d1 be the distance between the closest pair in S1

Similarly d2 for the set S2

d := min (d1 , d2)

12

21

L

38

Closest Pair of Points

Find closest pair with one point in S1 while the other in S2

Because we already have closest pair with distance d

The candidates for such pairs of points are in a stripe of breadth d on both sides of

the separating line L

Consider the pairs with one point in each set, assuming that distance < d.

12

21

d

L

d = min(12, 21)

39

12

21

1

2

3

4
5

6

7

d

Closest Pair of Points

Find closest pair with one point in S1 while the other in S2

Sort points in 2d-strip by their y coordinate.

Only check distances of those within 11 positions in sorted list! (d is 12)

Managed everything in O(n) for the conquer step.

Finally, standard recurrence T(n) = 2T(n / 2) + O(n) with solution O(n log n)

L

d = min(12, 21)

40

Multiplication of large integers

9715480283945084383094856701043643845790217965702956767

+ 1242431098234099057329075097179898430928779579277597977

2095067093034680994318596846868779409766717133476767930

X 5920175091777634709677679342929097012308956679993010921

Multiplication of large integers

a , b are both n-digit integers

If we use the brute-force approach to compute c = a * b, what is the time efficiency?

Remember the “School Algorithm”

addition of n integers, each with O(n) digits requires O (n2)

Already discussed in Lecture 1.

Divide and Conquer: Can we do better?

Split the decimal representations of the factors a and b into two halves,

and to multiply, use the distributive law.

3 × 6

= 3 × (2 + 4)

= 3×2 + 3×4

42

Multiplication of large integers

a = a1a0 and b = b1b0

c = a * b

= (a110n/2 + a0) * (b110n/2 + b0)

=(a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0)

For instance: a = 123456, b = 117933:

Then c = a * b = (123*103+456)*(117*103+933)

=(123 * 117)106 + (123 * 933 + 456 * 117)103 + (456 * 933)

What we achieve:
multiplication of n-digit numbers is reduced to:

several multiplications of n/2-digit numbers and some additions

In fact: we need 4 multiplications involving a1,a0,b1, and b0

Multiplications with 10n and 10n/2 are trivial: Append the required number of 0s.

43

Multiplication of large integers

a = a1a0 and b = b1b0

c = a * b

= (a110n/2 + a0) * (b110n/2 + b0)

=(a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0)

Solve by recursive application of the above:

At every recursion step: problem reduces to 4 recursive calls AND addition

Clearly: T(n) = 4T(n / 2) + O(n),

a = 4, b = 2, k = 1. Master Theorem implies: T(n) = O(nlog
2

4) = O(n2)

Still same like Brute Force… we need to avoid 4 recursive calls at each level

44

Multiplication of large integers

a = a1a0 and b = b1b0

c = a * b

= (a110n/2 + a0) * (b110n/2 + b0)

=(a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0)

Can we achieve?

multiplication of n-digit numbers by three multiplications of n/2-digit numbers + O(n)

<presenting the idea using the rectangle example>

45

Multiplication of large integers

a = a1a0 and b = b1b0

c = a * b

We are aiming at:

c = c210n + c110n/2 + c0, where computing each of c2, c1 and c0 requires ONE multiplication

This is achievable as follows:

c = (a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0)

=c210n + c110n/2 + c0,

where

c2 = a1 * b1 is the product of their first halves

c0 = a0 * b0 is the product of their second halves

c1 = (a1 + a0) * (b1 + b0) – (c2 + c0) is the product of the sum of the a’s halves and the sum of

the b’s halves minus the sum of c2 and c0.

46

Multiplication of large integers

Finally
c =c210n + c110n/2 + c0,
where
c2 = a1 * b1
c0 = a0 * b0
c1 = (a1 + a0) * (b1 + b0) – (c2 + c0)

Clearly: T(n) = 3T(n / 2) + O(n),
a = 3, b = 2, k = 1. Master Theorem implies: T(n) = O(nlog

2
3) = O(n1.59) far better than O(n2)

Caution: Factors (a1 + a0) and (b1 + b0) may have (n/2) + 1 digits
Split off the first digit and have recursive calls of (n/2)
Can only cause O(n) extra work, won’t affect the time bound

Acceleration takes effect only for rather large n (more than some 100 digits)
Recursive calls being the overhead

47

Graphs

Basic Definitions, Applications and Interesting Problems

49

Graphs

Graph. G = (V, E)

 V = nodes.

 E = edges between pairs of nodes.

 Captures binary relationships between objects (nodes).

– Symmetric relationships: G is undirected, all edges (u, v) are unordered: (u, v) and (v, u) are identical

– Asymmetric relationships : G is directed, All edges (u, v) are ordered: (u, v) and (v, u) are different

 Graph size parameters: n = |V|, m = |E|.

 A node and an edge are incident if the edge contains this node.

 Two vertices(nodes) joined by an edge are called adjacent.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

n = 8

m = 11

50

Some Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

51

World Wide Web

Web graph.

 Node: web page.

 Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

52

Social network

Social network graph.

 Node: people.

 Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

53

Ecological Food Web

Food web graph.

 Node = species.

 Edge = from prey to predator. (victim to killer)

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

54

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge, 0 otherwise

 Two representations of each edge.

 Space proportional to n2.

 Checking if (u, v) is an edge takes O(1) time.

 Identifying all edges takes O(n2) time.

1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 1 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

55

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

 Two representations of each edge.

 Space proportional to m + n.

 Checking if (u, v) is an edge takes O(deg(u)) time.

 Identifying all edges takes O(m + n) time.

– In most graph algorithms, adjacency lists are preferable, as they do not waste space for non-edges.

 Nodes in Directed graphs:

 in-degree: the number of incoming edges

 out-degree: the number of outgoing edges.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of incident edges

3 7

56

Graph Problems: Clique

Given: An Undirected Graph G.

Goal: Find a clique of maximum size.

Motivation: The graph models an interaction network (persons in a social network, proteins in a

living cell, etc.), where an edge means some close relation between two “nodes”.

We may wish to identify big groups of pairwise interacting “nodes”.

a subset K of nodes such that there is an edge between any two nodes in K

http://scienceblogs.com/goodmath/wp-content/blogs.dir/476/files/2012/04/i-24b2db50d71be775f98de9a464113aca-maximal-cliques.jpg

57

Graph Problems: Independent Set

Given: An Undirected Graph G.

Goal: Find and independent set of maximum size.

Motivation: The graph models conflicts between items, and we wish to select as many as

possible items conflict-free.

6

2

5

1

7

3

4

6

5

1

4

subset of nodes such that no two joined by an edge

58

Graph Problems: Vertex Cover

Given: An Undirected Graph G.

Goal: Find a vertex cover of minimum size.

Motivation: How can we place a minimum number of guards in a museum building so that they can

watch all corridors?

a subset of nodes such that every edge of G has at least one of its two nodes in it

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/images/lecture29/ApproxVert4.png

59

Graph Problems: Difficulty

How difficult is to solve these Graph problems (some hints):

Maximal Clique: Find a clique of maximum size.

k = 2 is trivial (every pair of adjacent nodes)

But, we need to consider all possible k.

Furthermore, for every k, we need to check all k-subsets of nodes.

In other words, we need to check all possible 2n subsets of the node set V.

n could be very large…

This 2n is not special here, same applies to e.g., Interval Scheduling…

The difference is… Our Algorithm Design Approaches seem to fail here…

Next Week: Going to be hard…

for whom…?

Of course for these problems.

However, to fight against a hard opponent, we need to work hard!

a subset K of nodes such that there is an edge between any two nodes in K

Monday, LV 5 (2016-09-26)

1 Multiplying by Squaring
Given an integer a with n digits, we want to square a.
Given two integers a and b (each with n digits), we want to multiply a*b.

We can reduce one problem to the other.

Suppose we have an algorithm that can square integers in some time O((n)). S
= polynomial, S(n) ≥ n.

Using the squaring algorithm we compute: ab = ((a + b)2 − (a − b)2) ∗ 1
4 .

All operations except squaring runs in linear time (at worst, to divide by 4 in
binary is constant).

Now we can multiply two arbitrary integers in: O(S(n)).

1.1 Is squaring easier than multiplication?
Squaring is obviously a special case of multiplication, hence is there a super
good algorithm for squaring that we can use instead of using multiplication?

Nope.

2 Two uses of reduction
1. Solve a problem X with help of an existing algorithm for a problem Y.

2. Prove that problem X is at least as hard as problem Y.

3 Definition of Reduction
X, Y: problems
|x|: length of an instance x, for the problem X
If “X is reducable to Y in O(t(n)) time”, we can transform every instance of the
first problem (x, |x|=n) into an instance of the second problem, y=f(x) of Y.

1

We may then transform a solution of y back to a solution of x. All of this, in
O(t(n)) time.

3.1 Flowchart
Assume Y solvable in O(u(n)) time.

• x (an instance of X) is transformed into an instance of the second problem
(done by the reduction) y=f(x). This takes t(n) time.

• We now solve our second problem, and get the solution of y. This step
takes u(t(n)) time.

• Transform the solution of y back into a solution of x. This step takes t(n)
time.

– All in all, it takes t(n) + u(t(n)) time.

If Y is an easy problem, and the reduction is fast, X is also an easy problem.
However, if X is hard, Y is hard.

4 Optimization Vs Decision
What’s the difference?

4.1 Optimization
Given an instance x, find a solution with minimum/maximum value.

4.2 Decision
Given an instance x and a number k, does x posess a solution with value {≤

≥}
k?

4.2.1 Reducability for decision problems

X, Y: decision problems
|x|: length of instance x of X

X is reducable to Y in O(t(n)) time. This means that we can transform ev-
ery x into an instance y=f(x) of Y s.t: x and y gives the same answer. I.e. x
answers Yes ⇔ y answers Yes. Note also that f is computable in O(t(n)) time.

X is reducable to Y in polynomial time. This is as above, but t is polynomial.
(Denoted by X ≤p Y.)

2

5 Graph Problems
G = (V,E), |V| = n

Clique ≤p Indep. Set

All cliques in a graph G is exactly the independent sets in the same graph.
One can reduce clique to independt set as: Does G contain a clique of size k
being equivalent to asking if G has an independent set of k nodes. f(Ḡ,k) =
(G,k).

Indep Set ≤p Clique

In the same way we can reduce independent set to clique: f(G,k) = (Ḡ,k).

If we have vertex cover in some graph: U ⊆ V vertex cover⇔ V \ U indep. set.

Vertex Cover ≤p Indep Set

f(G,k) = (G, n-k)

We can also do: Indep Set ≤p Vertex Cover.

6 Generic Reductions
Suppose X is a “special case” of Y, like squaring is a special of multiplication
and interval scheduling of weighted interval scheduling. Then it is the case that
X ≤p Y (via f(x)=x).

6.1 Interval scheduling ≤p Independent Set
Given four intervals: [1,5], [2,6], [3,8], [7,9] we want to see if we can find a sub-
set of k pairwise disjoint intervals we can draw a graph where each interval is
a vertex and each interval that intersects another interval has an edge between
its nodes.

The reverse is however not trivial. Ptr cannot show this. :(Can it even be
done? Think of a “circle graph”, the fifth interval must intersects only the first
and last intervals – cannot be done.

6.2 Transitivity
If X ≤p Y ∧ Y ≤p Z ⇒ X ≤p Z

Proof:

3

X f→ Y g→ Z
f is computable in time p(n)
g is computable in time q(n)
p, q are polynomial in time

X ≤p Z via h=g ◦ f:
x is Yes ⇔ f(x) is Yes ⇔ g(f(x)) is Yes

h is computable in p(n) + q(p(n)) which is polynomial.

7 NP or P?

7.1 Polynomial Time: P
P: class of decision problems that can be solved by an algorith that runs in
polynomial time.

If X ≤p Y ∧ Y ∈ P ⇒ X ∈ P.

Proof:

X f→ Y
f computable in p(n) time
Y solvable in q(n) time
p, q are polynomial in time

To solve x, we compute f(x) and solve this instance. The time required:
p(n) + q(p(n)).

7.2 Non Deterministic Polynomial Time: NP
NP: class of all decision problems for which a polynomial-time algorithm exists
that verifies solutions that are already given to Yes-instances.

7.2.1 Clique example

We do not know how to solve this problem efficiently. However, if someone gives
us a solution we can simply count if the clique contains k nodes, then we check
that each node has an edge to all other nodes. This can be done in polynomial
time.

4

Wednesday, LV 5 (2016-09-28)

1 NP Completeness
The N in NP stands for “Non deterministic”.

A problem Y is called NP-complete if Y ∈ NP and ∀x ∈ NP : X ≤p Y . It
contains the whole difficulty of the class NP. There is no intersections between
the P and NP-complete set. I.e., as long as P 6= NP, there is no NP-complete
problem in P.

Proof
Assume Y ∈ P and Y is NP-complete. It then follows that ∀x ∈ NP : X ≤p Y
and ∀x ∈ NP : X ∈ P. This is not possible?

Assume that (Y is NP-complete) and (Y≤pZ) and (Z ∈NP), it then follows
that Z is NP-complete.

Proof
if ∀x ∈ NP : X ≤p Y ≤p Z then ∀x ∈ NP : X ≤p Z due to transitivity.

Note: If you reduce X to Y it means that Y is at least as hard as X!!! If
you are asked to prove a reduction X ≤p Y you shall show that you can solve
X using Y.
Note 2: The NP-problems are hard to solve, easy to check, but the NP-
complete are hard to check and to solve. Only the NP-complete problems are
non-polynomial.

1.1 Find an NP-complete problem - The SAT Problem
Boolean variables: xi
Literals: xi, x̄i (¬xi)
Clause: ∨ of literals
Conjunctive Normal Form (CNF): ∧ of clauises

1

1.1.1 Example of NP-complete problem - CNF that describes vertex
cover ≤ k

Given a graph G we want to find a way to “cover all edges” (guard at the mu-
seum) using at most k edges. If we have a graph with vertices (1, 2, 3, 4) and
edges ((1,2), (1,3), (2,3), (3,4)) we can achieve this with CNF:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧
(¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

SAT: Given a CNF, find a satisfying assignment of truth values. I our ex-
ample we would set x1=x3=1 and x2=x4=0.

SAT ∈ NP, if someone gives us a satisfied assignment we can check if the
assignment is valid in polynomial time (linear in this case). The proof that SAT
∈ NP-complete is long...

1.2 K-SAT
A SAT-problem where the CNF contian atmost k literals in each clause.

1.2.1 Proof that SAT ≤p 3-SAT

We are given an instance of the first problem (a CNF with unlimited length-
clauses) φ. Now we have to construct an equivalent formula that have at most
3 literals in every clause.

Take any clause C in φ, that is too long, and try to split it into two sets A
and B. This leads us to C = A ∨ B. Replace A ∨ B with two shorter clauses A
∧ B (this does not work since ∧ 6= ∧). However, by introducing a fresh variable
u we can write: A ∨ B ⇔ (A ∨ u) ∧ (B ∨ ¬u).

Proof that A ∨ B ⇔ (A ∨ u) ∧ (B ∨ ¬u)
If A is true, A ∨ u holds. We can choose u to be false, hence ¬u is true and (A
∨ u) ∧ (B ∨ ¬u) is true. Ptr also showed the other way.

Iterate this until all clauses have atmost three literals.

ψ: The generated formula
φ is satisfiable ⇔ ψ is satisfiable

Does this run in polynomial time? Yes, because of some sum of cube argu-
ment.

3-SAT is also NP-complete!

2

1.2.2 Proof sketch that 3-SAT ≤p Indep. Set

(xi ∨ xj ∨ xk) ∧ ..., where each literal could be negated.
m is the number of clauses
n is the number of variables

Every clause is represented by a triangle in a graph and each vertex is labeled
by the name of their corresponding literal in the CNF. For every variable we
also have an edge (xi – ¬xi), ... We now connect each vertex in a triangle with
its corresponding “edge vertex”.

The given CNF is satisfiable ⇔ G has an independent set with m+n nodes.

Proof
If the formula is satisfiable it means that we have one true literal in every clause
(one true vertex in each triangle). We mark the true vertex in each triangle as
well as the false literal vertex in the “edges”.

If we have an independent set of size m+n we know that we can have at most
one marked vertex in each triangle and at most one node from each edge pair.

Indep. Set is NP-complete

1.3 Subgraph Isomorphism
Given two graphs G and H we ask ourselves if H is a subgraph of G. We try to
solve this by: Clique ≤p Subgraph Isomorphism.

1.3.1 Reduction

Given a graph G and a number k we ask if the graph contains a clique of size
k. Hence f(G,k) = (G,H) where H is a clique of size k. H is exponentially larger
than k (exponentially blow up). This is a polynomial time reduction, because
we consider the instance as a whole (the graph and the number).

3

https://en.wikipedia.org/wiki/Subgraph_isomorphism_problem

Algorithms: Lecture 10

Chalmers University of Technology

Today’s Topics

Basic Definitions

Path, Cycle, Tree, Connectivity, etc.

Graph Traversal

Depth First Search

Breadth First Search

Testing Bipartatiness (One Graph Two colors)

3

Cycles

Def. A path is a sequence of v1, v2, …, vk-1, vk nodes with the property

that each consecutive pair vi, vi+1 is joined by an edge in G.

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the

first k-1 nodes are all distinct.

Directed G: directed path, cycle

Every pair (vi, vi+1) in the path or cycle is joined by a directed edge

 must respect the directionality of edges.

cycle C = 1-2-4-5-3-1

Not a cycle: 1-3-8-7-3-1

4

Connected Graph

Def. An undirected graph is connected if, for every pair of nodes u

and v, there is a path from u to v.

5

Trees

Def. An undirected graph is a tree if it is connected and does not

contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the

following statements imply the third.

 G is connected.

 G does not contain a cycle.

 G has n-1 edges.

6

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge

away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

7

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

 biologists draw their tree from left to right

8

GUI Containment Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

GUI containment hierarchy. Describe organization of GUI widgets.

Graph Traversal

10

Connectivity

s-t connectivity problem. Given two node s and t, is there a path

between s and t?

s-t shortest path problem. Given two node s and t, what is the length

of the shortest path between s and t?

Applications.

 Social Network: deciding whether two persons are connected

through a chain of friends.

 Fewest number of hops in a communication network.

 Maze traversal.

How to proceed to find 1-6 connectivity?

 Need a systematic exploration of the graph

11

Breadth First Search

Breadth First Search (BFS):

BFS(s) // Find a BFS tree rooted at s, which includes all nodes reachable from node s.

Create a Boolean array Discovered[1…n], Set Discovered[s] = true and
Discovered[v] = false for all other v.

Create an empty FIFO queue Q, add node s to Q.

while Q is not empty

dequeue a node u from Q

for each node v adjacent to node u

if Discovered[v] is false then

add node v to Q, set Discovered[v] to true

endif

endfor

endwhile

12

Breadth First Search

BFS Tree:

Create an empty tree T

Add edge (u, v) to the tree T, when v is discovered the first time

http://i.stack.imgur.com/TjhfH.png

13

Breadth First Search: Analysis

Analysis:

• A node u enters Q at most once, and
the for loop needs nodes adjacent to every such u

• O(1) to process an edge

• Finding all v adjacent to u:

• Adjacency Matrix:

 we have to check all matrix entries in u's row: O(n)

 total time required to process all rows of the Matrix: O(n2)

• Adjacency List:

 when we consider node u, there are deg(u) incident edges (u, v)

 total time processing all the edges is uV deg(u) = 2m  O(m)

 setup time for the array Discovered
is O(n),  O(m + n)

 m is at least n-1 for connected graph, m dominates  O(m)

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

14

Breadth First Search: Properties

BFS intuition. Explore outward from s in all possible directions, adding nodes

one "layer" at a time.

BFS algorithm partitions

the nodes into layers:

 L0 = { s }.

 L1 = all neighbors of L0.

 L2 = all nodes that do not belong to L0 or L1, and that have an edge to a

node in L1.

 Li+1 = all nodes that do not belong to an earlier layer, and that have an edge

to a node in Li.

 Implementation using Queue processes the nodes exactly layer by layer

 explores in order of distance from s.

s L1 L2 L n-1

15

Breadth First Search: Properties

Property. Let T be a BFS tree of G = (V, E), nodes u, v belong to T, and

let (u, v) be an edge of G. Then the level of u and v differ by at most 1.

Let u, v belong to layers Li and Lj respectively.

Suppose i < j − 1. (a contradiction)

 When BFS examines the edges incident to u, since u belongs to

layer Li, the only nodes discovered from u belong to layers Li+1 and

earlier;

 hence, if v is a neighbor of u, then it should have been

discovered by this point at the latest, and

 should belong to layer Li+1 or earlier

16

Breadth First Search: Properties

What follows:

 For each i, Li consists of all nodes at distance exactly i from s.

 There is a path from s to t iff t appears in some layer.

 Moreover: s-t is a shortest path.

L0

L1

L2

L3

17

Depth First Search

Depth First Search (DFS):

Create a Boolean array Explored[1…n], initialized to false for all.

DFS(u)

set Explored[u] to true

for each node v adjacent to node u

if Explored[v] is false then
DFS(v)

endif
endfor

• Call DFS(s)
 each recursive call is done only after termination of the previous call,

this gives the desired depth first behavior.

• In iterative implementation, maintain a stack explicitly.

18

Depth First Search

DFS tree:

Take an array parent, set parent[v]= u when calling DFS(v) due to edge (u, v).

While setting u (u ≠ s) as Explored, add the edge (u,parent[u]) to the tree.

Reference: http://i.stack.imgur.com/gh0T1.png

19

Depth First Search: Edge Classification

Edge Classification:

As we execute DFS, an edge (u, v) can be classified into four edge types.

 IF v is visited for the first time as we traverse the edge (u, v),

1. then the edge is a tree edge.

 ELSE, v has already been visited:

2. If v is an ancestor of u, then (u, v) is a back edge.

3. Else, if v is a descendant of u, then (u, v) is a forward edge.

4. Else, if v is neither an ancestor or descendant of u, then (u, v) is a
cross edge. (u and v belong to different paths from the root)

Reference: https://courses.csail.mit.edu/6.006/spring11/rec/rec13.pdf

20

Depth First Search: Edge Classification

Important Properties:

 tree edges form the DFS tree in G.

 G has a cycle if and only if DFS finds at least one back edge.

 G is undirected graph: it cannot contain forward edges and cross edges
 the edge (v, u) would have already been traversed during DFS before

we reach u and try to visit v via edge (u, v).

Reference: https://courses.csail.mit.edu/6.006/spring11/rec/rec13.pdf

21

BFS vs. DFS

BFS: Put unvisited vertices on a queue.

 Examines vertices in increasing distance
from s.

 Using adjacency list requires O(m).

DFS: Put unvisited vertices on a stack.

 tries to explore as deeply as possible

 Mimics maze exploration.

 O(m) due to similar reasoning.

http://i.stack.imgur.com/QtYo8.jpg

http://i.stack.imgur.com/TjhfH.png

http://i.stack.imgur.com/gh0T1.png

22

Finding all Articulation Points

Def. An articulation point in a connected, undirected graph is a node v such
that removal of v and of the edges incident to v makes the graph
disconnected.

Given: an undirected graph G = (V, E).

Goal: Find all articulation points.

Motivation:

reliability (failure tolerance) of communication networks

Reference: http://1.bp.blogspot.com/OykmfN7Z3tI/Us75fUCD1jI/AAAAAAAAAPo/sPZQnW0TL9Y/s1600/articulation+point.png

23

Finding all Articulation Points

Given: an undirected graph G = (V, E).

Goal: Find all articulation points.

Observation: there no cross edges in DFS tree on undirected graphs.

• Chose arbitrary start node s and find a DFS tree rooted at s
 s is an articulation point iff s has more than one child in the DFS tree

• run DFS n times, once from every start node, which costs O(nm) time.
 Amazingly, it is possible achieve O(m) time, using only one DFS tree

and a variant of dynamic programming

Reference: http://1.bp.blogspot.com/OykmfN7Z3tI/Us75fUCD1jI/AAAAAAAAAPo/sPZQnW0TL9Y/s1600/articulation+point.png

24

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

25

Connected Component

Connected component. In undirected graph G, Find all nodes reachable

from s.

Upon termination, R is the connected component containing s.

 BFS, DFS  O(m)

G is connected?

 iff all nodes are reachable from arbitrary node s

All connected components of G?

 O(m + n): If the search has aborted without finding all nodes,

restart the search in a yet unmarked node, and so on.

s

u v

R

it's safe to add v

26

Strong Connectivity

A directed graph G is strongly connected if, for every two nodes u and v,

there is a path from u to v and a path from v to u.

 The street map of a city with one-way streets should be strongly connected,

or the traffic planners made a mistake.

G is a directed graph, Is G Strongly Connected?

 Grev :obtained from G simply by reversing the direction of every edge

 Run BFS (or DFS) with an arbitrary start node s, once on each G, and Grev

 both searches reach all nodes IFF G is Strongly Connected

27

Strong Connectivity

All Strongly connected components of G?

 Find out the strongly connected component containing s (same as in Strong

Connectivity check)

 Restart the search in a node, yet not part of any strong component,

– and so on.

 O(nm): Worst case G has many small connected components, O(m) time for

each one using the above approach.

 Remark: O(m) is achievable by some tricky use of DFS, we skip.

Testing Bipartiteness (One Graph Two colors)

29

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be

colored red or blue such that every edge has one red and one blue end.

Applications.

 Scheduling: machines = red, jobs = blue.

a bipartite graph

30

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

 Many graph problems become:

easier if the underlying graph is bipartite (matching)

tractable if the underlying graph is bipartite (independent set)

 we need to understand structure of

bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

L1 L2 L3

31

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

32

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

33

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

Pf. (i)

 By assumption edges don’t join nodes on same layer

 Every edge joins two nodes in adjacent layers.

 Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

34

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Pf. (ii)

 Suppose (x, y) is an edge with x, y in same level Lj.

 Let z = lca(x, y) = lowest common ancestor.

 Let Li be level containing z.

 Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.

 Its length is 1 + (j-i) + (j-i), which is 2(j − i) + 1, an odd number. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

35

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Algorithms: Lecture 11

Chalmers University of Technology

Today’s Topics

Directed Acyclic Graphs and Topological Ordering

Minimum Spanning Trees

 Prim’s Algorithm

 Krusal’s Algorithm

Demos and parts of some slides are adapted from https://courses.cs.washington.edu/courses/cse421/09wi/
http://www.vumultan.com/Books/CS702%20Handouts%20Version%201.pdf

DAGs and Topological Ordering

v2 v3

v6 v5 v4

v7 v1

4

Directed Acyclic Graphs (DAG)

Def. A Directed Cycle in a directed graph is a cycle that can be traversed

respecting the orientation of the edges: v1, v2, v3,…, vn, v1, where every

(vi, vi+1) and (vn, v1) is a directed edge.

Def. A DAG is a directed graph that contains no directed cycles.

Given: a directed graph G = (V, E).

Goal: Find a directed cycle in G, or report that G is a DAG.

Motivation: Precedence constraints: edge (vi, vj) means vi must precede vj.

Task vi must be done before vj

tasks can be calculations in a program

or logic circuit, jobs in a project,

steps in a manufacturing process, etc.

A directed cycle would indicate

error in the design of such models

a DAG

v2 v3

v6 v5 v4

v7 v1

5

Topological Order

Def. A topological order of a directed graph G = (V, E) is an ordering of its

nodes as v1, v2, …, vn so that all directed edges go to the right, that is for

every edge (vi, vj) we have i < j.

Given: a directed graph G = (V,E).

Goal: Construct a topological order of G, or report that G does not admit

a topological order.

Motivation: Nodes are the tasks with pairwise dependency constraints.

Existence of a topological order for G guarantees it is a DAG

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

6

Directed Acyclic Graphs

If G has a topological order, then G is a DAG.

 Topological order allows only edges from left to right

 With this we can never close a cycle.

 Closing a cycle would require an edge from right to left which is against

the definition of topological order.

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

7

Directed Acyclic Graphs

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

Stronger Version: G is a DAG if and only if G has a topological order

 If part (If G has a topological order, then G is a DAG.)… done already

 Only if: If G is a DAG, then G has a topological ordering.

Observation:

A topological ordering must start with a node with NO incoming edges.

a topological ordering

v1 v2 v3 v4 v5 v6 v7

a DAG

v2 v3

v6 v5 v4

v7 v1

8

Directed Acyclic Graphs

If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

 Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.

 Pick any node v, and begin following edges backward from v. Since v

has at least one incoming edge (u, v) we can walk backward to u.

 Then, since u has at least one incoming edge (x, u), we can walk

backward to x.

 Repeat until we visit a node, say w, twice.

 Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle. ▪

w x u v

9

Directed Acyclic Graphs

If G is a DAG, then G has a topological ordering.

Pf.

 Lets solve an example first: Given a DAG we find out topological ordering.

 Then, we proceed to the formal proof.

10

v1

Topological Ordering Algorithm: Example

Topological order:

v2 v3

v6 v5 v4

v7 v1

11

v2

Topological Ordering Algorithm: Example

Topological order: v1

v2 v3

v6 v5 v4

v7

12

v3

Topological Ordering Algorithm: Example

Topological order: v1, v2

v3

v6 v5 v4

v7

13

v4

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3

v6 v5 v4

v7

14

v5

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4

v6 v5

v7

15

v6

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5

v6

v7

16

v7

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5, v6

v7

17

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

18

Directed Acyclic Graphs

If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

 Base case: true if n = 1.

 Given DAG on n > 1 nodes, find a node v with no incoming edges.

 G - { v } is a DAG, since deleting v cannot create cycles.

 By inductive hypothesis, G - { v } has a topological ordering.

 Place v first in topological ordering; then append nodes of G - { v } in

topological order.

 This is valid since v has no incoming edges. ▪

19

Directed Acyclic Graphs

To compute a topological ordering of G: (already practiced on the example)

 Find a node v with no incoming edges and order it first

 Delete v from G

 Recursively compute a topological ordering of G−{v} and

append this order after v

Seems like a Greedy Algorithm, however, nothing to optimize

 All we need to do is to chose an arbitrary node v with in-deg(v) = 0

How to efficiently maintain an updated degree for all current nodes in G?

 Queueing & Counting

20

Topological Sorting Algorithm: Running Time

Maintain the following information:

– count[v] = remaining number of incoming edges, in-degree(v)

– Q= queue of remaining nodes with no incoming edges, in-degree(v)=0

 Initialization: O(m) via single scan through graph.

 Update: to delete u

– remove u from Q

– decrement count[v] for all edges from u to v, and

– add v to Q if count[v] hits 0

this is O(1) per edge ONCE

 Updating in-degrees costs O(m) in total: G as Adjacency lists

 The order of removal from Q gives the Topological Ordering

Minimum Spanning Trees

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Minimum Spanning Tree (MST)

Given: a connected undirected graph G = (V,E) where every edge has some positive

cost ce (also called weight)

Minimum spanning tree (MST): an MST is a subset of the edges T  E such that T

is a spanning tree (it “spans” all nodes in V) whose sum of edge weights is minimized.

Goal: Find an MST in G.

5

23

10

21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, eT ce = 50

22

23

Applications

MST is fundamental problem with diverse applications.

 Network design.

– telephone, electrical, hydraulic, TV cable, computer, road

 Approximation algorithms for NP-hard problems.

– traveling salesperson problem, Steiner tree

 Indirect applications.

– max bottleneck paths

– LDPC codes for error correction

– image registration with Renyi entropy

– learning salient features for real-time face verification

– reducing data storage in sequencing amino acids in a protein

– model locality of particle interactions in turbulent fluid flows

– autoconfig protocol for Ethernet bridging to avoid cycles in a network

 Cluster analysis.

Minimum Spanning Tree (MST)

Cayley's Theorem. There are nn-2 spanning trees in a complete graph of n nodes

Problem Analysis:

Which edges should be chosen by an MST?

Intuitively: Those with min cost, to get an overall min.

Precisely: If e is a cheapest edge in G, then e belongs to some MST.

 Let T, an MST, does not include e.

 Add e to T  T has a cycle C involving e.

 Remove some other edge from C, get a better T.

Greedy Algorithm?

5

23

10

21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, eT ce = 50

can't solve by brute force

24

24

8

11

8

7

1 2

6

4

7

14

9

10

a

gh f

e

b c d

i

Prim’s AlgorithmMST - Greedy Algorithms

25

24

8

11

8

7

1 2

6

4

7

14

9

10

root

a

gh f

e

b c d

i

Prim’s AlgorithmMST - Greedy Algorithms

26

2
4

8

11

8

7

1 2

6

4

7

14

9

10

a

gh f

e

b c d

i

Prim’s AlgorithmMST - Greedy Algorithms

27

2
4

8

11

8

7

1 2

6

4

7

14

9

10

a

gh f

e

b c d

i

MST - Greedy Algorithms

28

24

8

11

8

7

1 2

6

4

7

14

9

10

a

gh f

e

b dc

i

MST - Greedy Algorithms

29

24

8

11

8

7

1 2

6

4

7

14

9

10

a

gh

e

b d

f

c

i

MST - Greedy Algorithms

30

24

8

11

8

7

1 2

6

4

7

14

9

10

a

gh

e

b d

i

f

c

MST - Greedy Algorithms

31

24

8

11

8

7

1 2

6

4

7

14

9

10

a

gh

e

b d

Prim’s Algorithm

f

c

i

MST - Greedy Algorithms

32

24

8

11

8

7

1 2

6

4

7

14

9

10

a

gh

e

b dc

i

f

MST - Greedy Algorithms

33

24

8

11

8

7

1 2

6

4

7

14

9

10

a

gh

b

i

f

c d

e

MST - Greedy Algorithms

34

35

MST - Greedy Algorithms

The greedy rule that we followed in the demo on previous slides

can be formulated as:

 Start at some root node s and greedily grow a tree T from s outward.

 At each step, add the cheapest edge e to T having one endpoint in T.

 Both edges in T would mean T gets a cycle.

Prim’s Algorithm for finding an MST

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

Edges Weight

(g, h) 1

(c, i) 2

(f, g) 2

(a, b) 4

(c, f) 4

(g, i) 6

(c, d) 7

(h, i) 7

(a, h) 8

(b, c) 8

(d, e) 9

(e, f) 10

(b h) 11

(d, f) 14

36

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

Final sets = {a}, {b}, {c}, {d}, {e}, {f}, {g, h}, {i}

37

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {g, h}, {i}

Final sets = {a}, {b}, {c, i}, {d}, {e}, {f}, {g, h}

38

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a}, {b}, {c, i}, {d}, {e}, {f}, {g, h}

Final sets = {a}, {b}, {c, i}, {d}, {e}, {f, g, h}

39

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Kruskal’s Algorithm

Initial sets = {a}, {b}, {c, i}, {d}, {e}, {f, g, h}

Final sets = {a, b}, {c, i}, {d}, {e}, {f, g, h}

 In intermediate steps, we don’t get a tree actually.

 A collection of connected components of edges, called a “Forest”

40

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b}, {c, i}, {d}, {e}, {f, g, h}

Final sets = {a, b}, {c, f, g, h , i}, {d}, {e}

41

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b}, {c, f, g, h, i}, {d}, {e}

Final sets = {a, b}, {c, f, g, h, i}, {d}, {e}

42

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b}, {c, f, g, h, i}, {d}, {e}

Final sets = {a, b}, {c, d, f, g, h, i}, {e}

43

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b}, {c, d, f, g, h , i}, {e}

Final sets = {a, b}, {c, f, d, g, h , i}, {e}

44

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b}, {c, d, f, g, h, i}, {e}

Final sets = {a, b, c, d, f, g, h , i}, {e}

45

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b, c, d, f, g, h , i}, {e}

Final sets = {a, b, c, d, f, g, h , i}, {e}

46

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b, c, d, f, g, h , i}, {e}

Final sets = {a, b, c, d, e, f, g, h , i}

47

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

Kruskal’s Algorithm

e

Initial sets = {a, b, c, d, e, f, g, h , i}

Final sets = {a, b, c, d, e, f, g, h , i}

48

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

Kruskal’s Algorithm

e

Initial sets = {a, b, c, d, e, f, g, h, i}

Final sets = {a, b, c, d, e, f, g, h, i}

49

2

6

10

2

7

4

8 7

8

11

1

4 14

9

a

b

gh

i

c

f

d

e

Initial sets = {a, b, c, d, e, f, g, h, i}

Final sets = {a, b, c, d, e, f, g, h , i}

50

51

MST - Greedy Algorithms

The previous demo follows what we call: Kruskal's algorithm.

 Start with T = . Consider edges in ascending order of cost.

 Insert edge e in T unless doing so would create a cycle.

 Like Prim’s, this algorithm also produce an MST.

52

MST - Greedy Algorithms

Correctness?

Our “the cheapest edge” argument does not hold for every step.

Let’s extend it carefully

Simplification: All edge costs ce are distinct.

A generalized version of cheapest edge inclusion property of MSTs:

If we partition the node set V arbitrarily in two non-empty sets X and Y, then

the cheapest edge among all edges connecting X and Y must belong to any MST.

MST - Greedy Algorithms

Edge inclusion lemma:

Let X = S and Y = V\S, and suppose e = (u, v) is the minimum cost edge of E,

between X and Y.

We want to show:

 e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not an MST.

X Y

e vu

53

Greedy Algorithms: Edge inclusion lemma

Edge inclusion lemma

Pf. Suppose T is an MST that does not contain e
 Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in X and v1 in Y

T* = T  {e} – {e1} is a spanning tree with lower cost
 by assumption, e is the minimum cost edge between X and Y

Hence, T is not a minimum spanning tree (a contradiction).

• In the presence of assumption (All edge costs ce are distinct), above proof
also says that: the MST is uniquely determined.

X Y
e vu
e1

v1u1

54

Optimality Proofs

Prim’s (Kruskal’s) algorithm computes a Tree which is an MST

Show that:

 When an edge is added to the MST by Prim or Kruskal, the edge is the

minimum cost edge between S and V\S for some set S.

 All selected edges together form a tree (NO Cycles).

 The tree spans the entire set V.

5

23

10

21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, eT ce = 50
55

Optimality Proofs

Prim’s Algorithm: Without loosing any detail, we can write it as follows.

S = { }; T = { };

while S != V

choose the minimum cost edge

e = (u,v), with u in S, and v in V\S

add e to T

add v to S

endwhile
Edge inclusion lemma ensures every e
chosen here actually belongs to an MST

This ensures all nodes are included in the tree

Ensures Cycle Free

56

Optimality Proofs

Kruskal’s Algorithm:

Let C = {{v1}, {v2}, . . ., {vn}}, T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the minimum cost edge
joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T

endwhile

This ensures all nodes are included in the tree

Edge inclusion lemma ensures every e
chosen here actually belongs to an MST

Ensures Cycle Free

57

Yet another Greedy Algorithm

Reverse-Delete Algorithm:

Delete the most expensive edge that does not disconnect the graph.

Relies on the following lemma:

 The most expensive edge on a cycle is never in a minimum spanning

tree

 Correctness is proved along the same lines.

Remark: For dense graphs it is slower than the others, as it has to delete

most edges.

58

Dealing with the assumption of no equal cost edges

Perturbation Argument:

Force the edge costs to be distinct to break the ties

 Add small distinct quantities to the edges having equal costs

Apply Prim’s /Kruskal’s algorithm

 the resulting edge set is an MST also for G with the original edge costs

 the sum of perturbations should be small enough

59

Application: Clustering

Clustering: a partitioning of a set of (data) points into disjoint subsets of points,

called clusters.

How: Some distance function is defined between the points.

Spacing: the minimum distance of two clusters

(or equivalently, the minimum distance of any two points from different clusters).

Given : a collection of n points in a geometrical space, and an integer k < n.

The pairwise distances of points are known, or they can be easily computed.

Goal: Construct a clustering with k clusters and maximum spacing.
60

Distance clustering

Divide the data set into 2 subsets and maximum spacing

 dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}

Motivations:

Clustering in general has many applications in data reduction, pattern

recognition, classifcation, data mining, and related fields.

61

Distance Clustering Algorithm

Kruskal’s Algorithm:

Let C = {{v1}, {v2},. . ., {vn}}; T = { }

while |C| > K

Let e = (u, v) with u in Ci and v in Cj

be the minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

endwhile

The K nodes sets so obtained are the K clusters.

To prove: The obtained spacing is optimal.

The proof follows from the fact that Kruskal’s algorithm always joins two
disjoint subsets (into a single cluster) via a min cost edge having endpoints in
both.

62

Implementation

Which one is faster Prim’s Algorithm or Kruskal’s Algorithms?

Prim’s:

S = { }; T = { };
while S != V

choose the minimum cost edge
e = (u,v), with u in S, and v in V\S

add e to T
add v to S

endwhile

Naïve implementation

 (n-1) iterations with O(m) every time to choose min cost e  O (nm)

How we implement this step, is going to
decide the running time.

63

Implementation

Which one is faster Prim’s Algorithm or Kruskal’s Algorithms?

Prim’s:

S = { }; T = { };
while S != V

choose the minimum cost edge
e = (u,v), with u in S, and v in V\S

add e to T
add v to S

endwhile

Improving the Naïve:

• For each v in V\S, maintain attachment cost
a[v] = cost of cheapest edge e = (u,v), with u in S

• Choosing the min cost edge is restricted to the n edges represented by a.
When “add v to S” happens, update array a as:

foreach (edge e = (v, u) incident to v)
if ((u  S) and (ce < a[u]))

decrease cost of a[u] to ce

Inside the while: O(n + n) = O(n)
Altogether: (n-1) iterations of while with O(n) every time  O (n2)

How we implement this step, is going to
decide the running time.

 O(n)

64

Implementation

Which one is faster Prim’s Algorithm or Kruskal’s Algorithms?

Prim’s:

S = { }; T = { };
while S != V

choose the minimum cost edge
e = (u,v), with u in S, and v in V\S

add e to T
add v to S

endwhile

Choosing a better data structure:

• Let F be the set of edges between S, and V\S.

 Choose the minimum cost e from F

• when “add v to S” happens, we update F:

 every e enters and leaves F exactly once  O(m)

 If F is a priority Queue, insert/remove(find min) is achievable using O(log m)

 Altogether  O(m log m)  O(m log n)

m  n2  log m is O(log n)

How we implement this step, is going to
decide the running time.

65

Implementation

Which one is faster Prim’s Algorithm or Kruskal’s Algorithms?

Prim’s:

S = { }; T = { };
while S != V

choose the minimum cost edge
e = (u,v), with u in S, and v in V\S

add e to T
add v to S

endwhile

Both implementations of Prim's algorithm are justified:

 O(n2) is somewhat faster if the graph is dense
(has a quadratic number of edges),

 but otherwise, O(m log n) is considerably faster.

66

Implementation

Which one is faster Prim’s Algorithm or Kruskal’s Algorithms?

Kruskal’s:

Let C = {{v1}, {v2}, . . ., {vn}}, T = { }
while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the minimum cost edge
joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T
endwhile

We need efficient way to find a “global” min cost edge:

 sort the edges wrt cost  O(m log m)  O(m log n)

 if current e creates a cycle, move to the next in the sorted list.

Avoiding cycles efficiently depends how we:

 Make sure for e = (u, v), u and v belong to disjoint sets

 Maintain C after every “Replace Ci and Cj by Ci U Cj”

A new data structure: Union-and-Find

The running time depends on the
implementation of these steps.

67

Union-and-Find

• Maintains partitions of a set (here: V) into subsets
• Each subset has a label

Supports the following operations:

FIND(i): returns the label of the subset that contains element i.

UNION(A,B): merge the subsets with labels A and B, that is,
replace these sets with A U B and give it a label.

68

Union-and-Find

Reference: https://www.cs.cmu.edu/~ckingsf/class/02713-s13/lectures/lec03-othermst.pdf

FIND(i): return UF.sets[i].
 Takes a constant amount of time.  O(1)

UNION(A,B):
Use the “size” array to decide
which set is smaller.
Assume A is smaller.
Walk down elements i in set A,
setting sets[i] = B.
Set size[B] = size[B] + size[A]
 O(n) in the worst case

69

Union-and-Find

FIND(i): O(1)

UNION(A,B): O(n) in the worst case

Kruskal’s:

Let C = {{v1}, {v2}, . . ., {vn}}, T = { }
while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the
minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T
endwhile

2 FIND calls per e
 O(m)

(n-1) UNION calls
 O(mn)
using O(n) per call

• Overall: O(mn) dominates the sorting cost

• Why considering O(n) which is worst case for ONE call to UNION?

• Can we do better by bounding the total for all UNION operations?

 What is the time for k < n call to UNION?

70

Union-and-Find

Rethinking “Time” for UNION(A,B):

Elementary operation:
 how often every element is relabeled and moved to other sets.

What invokes relabeling of an element?
 if it belongs to the smaller set in a UNION operation.

What happens then?
 the element now belongs to a new set of at least double the size.

What is the size of the larger set after k UNION operations?
 All sets are of size 1. After first UNION, the largest is 2
 After the second UNION, the largest can have at most 3 elements
 …, after k UNION operation, the largest can have at most k +1 size.

Every “elementary operation” moves the element from a set of size x to 2x
 every element is relabeled at most log2(k+1) times.
 For all elements  O(k log k)

71

Union-and-Find

 Sorting: O(m log m)  O(m log n)

Kruskal’s:

Let C = {{v1}, {v2}, . . ., {vn}}, T = { }
while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the
minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T
endwhile

2 FIND calls per e
 O(m)

(n-1) UNION calls
 O(n log n)

• Sorting dominates  O(m log n)

m  n2  log m is O(log n)

72

Union-and-Find

• Another Implementation of Union-and-Find
 Simpler and Faster in practice

1

1

11

• UNION becomes faster
 O(1)

• FIND(i) = Follow the pointer from i to the root of its tree.
 O(?)

73

Union-and-Find

FIND(i) requires O(log n) in a tree-based union-and-find data structure
containing n items.

Pf.
What is the depth of an element v in its tree?

 the number of times the set containing
it is renamed.

How many times a set can change its name?
 the set containing v at least doubles

every time when its name is changed.

The largest number of times the size can double is log2 n. •

Kruskal’s Algorithm:

Sorting O(m log n), FIND: O(m log n), UNION: O(n)

 Same running time as using the array-based union-and-find

 Simpler and Faster in practice
74

Algorithms: Lecture 12

Chalmers University of Technology

Today’s Topics

 Shortest Paths

 Network Flow Algorithms

Shortest Path in a Graph

4

Shortest Path Problem

Shortest path network.

 Directed graph G = (V, E).

 Source s, destination t.

 Length e = length of edge e, non-negative.

Single Source Shortest path problem: find shortest directed path from s to t.

Length of path s-2-3-5-t:
= 9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4

5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

6

Length of path = sum of edge lengths in path

5

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

6

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6














0

distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

7

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6














0

distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

delmin

8

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9






14



0

distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

decrease key

X



X

X

9

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9






14



0

distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

X



X

X

delmin

10

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9






14



0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X



X

X

11

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9






14



0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X



X

X

decrease key

X 33

12

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9






14



0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X



X

X

X 33

delmin

13

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9






14



0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

X



X

X

X 33

44
X

X

32

14

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

X



X

X

44
X

delmin

X 33X

32

15

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

X



X

X

44
X

35X

59 X

24

X 33X

32

16

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

X



X

X

44
X

35X

59 X

delmin

X 33X

32

17

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

X



X

X

44
X

35X

59 XX51

X 34

X 33X

32

18

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

X



X

X

44
X

35X

59 XX51

X 34

delmin

X 33X

32

24

19

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

X



X

X

44
X

35X

59 XX51

X 34

24

X50

X45

X 33X

32

20

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

X



X

X

44
X

35X

59 XX51

X 34

24

X50

X45

delmin

X 33X

32

21

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

X



X

X

44
X

35X

59 XX51

X 34

24

X50

X45

X 33X

32

22

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

X



X

X

44
X

35X

59 XX51

X 34

X50

X45

delmin

X 33X

32

24

23

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

X



X

X

44
X

35X

59 XX51

X 34

X50

X45

X 33X

32

24

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

X



X

X

44
X

35X

59 XX51

X 34

X50

X45

X 33X

32

25

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9





14



0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

X



X

X

44
X

35X

59 XX51

X 34

X50

X45

X 33X

32shortest path from s to t

26

Dijkstra's Algorithm

Dijkstra's algorithm.

 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes:

,)(min)(
:),(

e
Suvue

udv +=
Î=

p

s

v

u

d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

27

Dijkstra's Algorithm

Dijkstra's algorithm.

 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv +=
Î=

p

s

v

u

d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

28

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u  S, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for |S| = k  1.

 Let v be next node added to S, and let u-v be the chosen edge.

 The shortest s-u path plus (u, v) is an s-v path of length (v).

 Consider any s-v path P. We'll see that it's no shorter than (v).

 Let x-y be the first edge in P that leaves S,

and let P' be the s-x path.

P is already too long as soon as it leaves S.

 (P)   (P') +  (x,y)  d(x) +  (x, y)  (y)  (v)

nonnegative
weights

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

29

Dijkstra's Algorithm: Implementation

To Do:

For each unexplored node, explicitly maintain:

 Next node to explore = node with minimum (v).

 When exploring v, for each incident edge e = (v, w)

update:

.)(min)(
:),(

e
Suvue

udv 




p (w) = min { p (w), p (v)+ e }.

Implementation & Running Time

30

Dijkstra's Algorithm:

S = {}; d[s] = 0; d[v] = infinity for v != s

while S != V

Choose v in V\S with minimum d[v]

Add v to S

foreach w in the neighborhood of v

d[w] = min(d[w], d[v] + (v, w))

endif

endwhile

The running time
depends on the
implementation of
these steps.

Implementation & Running Time

31

Dijkstra's Algorithm:

S = {}; d[s] = 0; d[v] = infinity for v != s

while S != V

Choose v in V\S with minimum d[v]

Add v to S

foreach w in the neighborhood of v

d[w] = min(d[w], d[v] + (v, w))

endif

endwhile

Array Based Implementation

(n-1) iterations with O(n + n) every time  O (n2)

O(n)

try all candidate pairs:
 (worst case) every
time we are processing
edges to all (n-1)
neighbours
 O(n)

Implementation & Running Time

32

Dijkstra's Algorithm:

S = {}; PQ with d[s] = 0 and d[v] = infinity for v != s

while PQ is not empty

v ExtractMin from PQ

Add v to S

foreach w in the neighborhood of v

Update value for w in PQ

endif

endwhile

Priority Queue Based Implementation

 It is easy to think how many times do we have to run, altogether.

Assuming Adjacency lists are used, “for” loop runs in-deg(v) for every v != s.

 m edges, once for every edge  O(m log n)

 O(log n)

Single update
requires O(log n)

Maintain in a PQ

Dijkstra's Algorithm

33

Tree of Shortest paths from s to any u:

Take an array parent P of size n:

 Set P[u]= v, when d[u] gets updated due to v.

 While setting u (u ≠ s) as Explored (ExtratMin from PQ),

add the edge (u,parent[u]) to the tree.

Space Requirements:

• A system of shortest paths from s is saved in O(n) space.

• Applying Dijkstra's algorithm to every source node, we get a system of
shortest paths from every node to every other node, stored in O(n2) space,
which is optimal.

All edge lengths are EQUAL:

 Breadth First Search.

Dijkstra's Algorithm

34

Dijkstra’s Algorithm design technique?

 Greedy?

 Next node is chosen based on a greedy rule.

Dynamic Programming?

 We consider optimal shortest path for subpaths from s-t.

• Design techniques are not RIGID classification of efficient algorithms.

• Take them as general design principles.

 Single algorithm can combine several.

Network Flow Algorithms

Some slides’ contents adapted form:
http://homes.cs.washington.edu/~anderson/iucee/Slides_421_06/Lecture22_23.ppt
http://elderlab.yorku.ca/~elder/teaching/cse3101/lectures/07%20Network%20Flow%20Algorithms.ppt

Flow Networks

Internet

Telephone

Highways

Rail

Electrical Power

Gas

Water

…

36

Flows

•Warmup:

•A network of pipes

•pipes carry flow

•Each pipe has a maximum capacity

•A source in which flow arrives

•A sink at which flow leaves

•Only the positive flows in the flow network.

Goal: Max Flow

Figure courtesy of J. Edmonds 37

38

Flow network.

 Abstraction for material flowing through the edges.

 G = (V, E) = directed graph, no parallel edges.

 Two distinguished nodes:

– s = source, in-degree(s) = 0.

– t = sink, out-degree(t) = 0.

 c(e) or c(u,v) : capacity of edge e (u,v).

 f(e) or f(u,v) : flow through edge e (u,v).

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

capacity

source sink

2 5
2

7

39

Def. An s-t flow is a function that satisfies:

 For each e  E: [capacity]

 For each v  V – {s, t}: [conservation]

Def. The value of a flow f is:

Flows

0

0

0

0 0

0

0

0

0

Value = 4
0

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

 
veve

efef
 ofout in to

)()(



0  f (e)  c(e)

.)()()(
 in to ofout

 
tese

efeffval

40

Def. An s-t flow is a function that satisfies:

 For each e  E: [capacity]

 For each v  V – {s, t}: [conservation]

Def. The value of a flow f is:

the total flow leaving s = the total flow arriving in t.

Flows

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

 
veve

efef
 ofout in to

)()(



0  f (e)  c(e)

.)()()(
 in to ofout

 
tese

efeffval

4

41

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

42

Towards a Max Flow Algorithm

Greedy algorithm.

 Start with f(e) = 0 for all edge e  E.

 Find an s-t path P where each edge has f(e) < c(e).

 Augment flow along path P.

 Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

43

Towards a Max Flow Algorithm

Greedy algorithm.

 Start with f(e) = 0 for all edge e  E.

 Find an s-t path P where each edge has f(e) < c(e).

 Augment flow along path P.

 Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

44

Towards a Max Flow Algorithm

Greedy algorithm.

 Start with f(e) = 0 for all edge e  E.

 Find an s-t path P where each edge has f(e) < c(e).

 Augment flow along path P.

 Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

local optimality  global optimality

45

Residual Graph

Original edge: e = (u, v)  E.

 Flow f(e), capacity c(e).

Residual edge.

 "Undo" flow sent.

 e = (u, v) and eR = (v, u).

 Residual capacity:

Residual graph: Gf = (V, Ef).

 Residual edges with positive residual capacity.

 Ef = {e : f(e) < c(e)}  {eR : f(e) > 0}.

u v17

6

capacity

u v11

residual capacity

6

residual capacity

flow



c f (e) 
c(e) f (e) if e  E

f (e) if eR  E





forward edge

Backward
or reverse edge

Example of Residual Graph

Graph G = (V, E)

Residual Graph Gf = (V, Ef)

wrt the flow f,

whose value is 5 here

46

P = any simple directed s-t path in Gf.

Bottleneck b = the smallest residual capacity along P

P is called Augmenting path as we can push a flow s to t equal to b on P

capacity

flow

capacity

Computing Max Flow

Correcting the Greed: Ford-Fulkerson algorithm

 Start with f(e) = 0 for all edge e  E.

– Construct residual graph Gf (in first iteration it is same as G)

– Find an s-t augmenting path P in Gf with capacity b > 0

– Augment flow in G by b

 If e = (u, v) is a forward edge then increase f (e) in G by b

 Else (u, v) is a backward edge, and let e = (v, u) be in G decrease f (e) in G by b

– Repeat until you get stuck.

47

Example

G at some intermediate step.
Flow achieved is 19

Residual Graph has P with b = 4

Val(f) = 23 Stuck, no P possible

No more augmenting s-t paths  max flow attained.

48

Stuck, no P possible

Example

How to verify the claim: No more augmenting s-t paths  max flow attained.

49

Answer lies in: Cut
Is Ford-Fulkerson algorithm correct?

G at some intermediate step.
Flow achieved is 19

Residual Graph has P with b = 4

Val(f) = 23

Cuts of Flow Networks

 

 

A (,) of a flow network is a partition cut of into and

such that and .

S T V S T V S

s S t T

50

The Capacity of a Cut (S,T)

Maximum possible flow through the cut(S, T):

Sum of capacities c(u,v), where u  S and v  T
c(S,T) = 12+ 14 = 26





TvSu

vucTSc
,

),(),(

51

The Net Flow through a Cut (S,T)

Net flow through a cut = Flow out – Flow in

f(S,T) = 12 + 11 – 4 = 19





SuTvTvSu

uvfvufTSf
,,

),(),(),(

52

Bounding the Network Flow

The value of any flow f in a flow network G is bounded from above by

the capacity of any cut(S, T) of G.

 Follows from Capacity constraint

53

Net Flow of a Network

The net flow value across any cut(S, T) is the same and equal to the

flow value of the network.

 Follows from Conservation constraint

54

Min-Cut Problem

Capacity of the cut
= maximum possible flow through the cut
= 12 + 7 + 4 = 23

• The network has a capacity of at most 23.

• Here, the network does have a capacity of 23, because this is a minimum cut.

• How to find a cut(S, T) of minimum capacity?

 Ford-Fulkerson

cut

55

Example: Max-Flow Min-Cut

Original Network

augmenting path

4Resulting Flow =

Flow Network

56

Example: Max-Flow Min-Cut

Resulting Flow = 4Flow Network

Residual Network

Flow Network Resulting Flow = 11

augmenting path

57

Example: Max-Flow Min-Cut

Resulting Flow = 11Flow Network

Residual Network

Flow Network Resulting Flow = 19

augmenting path

58

Example: Max-Flow Min-Cut

Resulting Flow = 19Flow Network

Residual Network

Flow Network Resulting Flow = 23

augmenting path

59

Example: Max-Flow Min-Cut

Residual Network

Resulting
Flow = 23

No augmenting path:

Maxflow=23

60

Max-Flow Min-Cut Theorem

Let f is a flow in a flow network G=(V,E), with source s and sink t:

1. Since val(f)  c(S,T) for all cuts of (S,T) where s  S and t  T.

If val(f) = c(S,T) then c(S,T) must be the min-cut of G.

2. This implies that f is a maximum flow of G.

3. This implies that Gf contains no augmenting paths.

 If there were augmenting paths this would contradict that

we found the maximum flow of G

1231 … and from 23 we have that the Ford Fulkerson method finds the

maximum flow if the residual graph has no augmenting paths.

Hence, Max-flow min-cut theorem:

max-flow = min-cut.

61

Max-Flow = Min-Cut

How to find out the min-cut:

When Ford-Fulkerson stops, no directed s-t paths exists in Gf

 S = all v such that s-v path exists in Gf

 T = V\S

Clearly (S,T) is a cut.

It is also minimum because:

For all (u, v)  G , u  S and v  T.

 f(e) = ce

 All available capacity is used.

For all (v, u)  G , v  T and u  S.

 f(e) = 0

By the conservation constraint:

The net flow across any cut(S, T)

is the same and equal to

the flow of the network.

 val(f) = C(S,T).
62

No augmenting path

Analysis

O(m)

O(m)

?

63

Ford-Fulkerson’s Max-Flow

Initially f (e) = 0 for all e in G

While there is an s-t path in the residual graph Gf

Let P be a simple s-t path in Gf

f' = augment(f , P)

Update f to be f’

Update the residual graph Gf to be Gf’

Endwhile

Return f

Analysis

• Let

• Then the time can be written as: O(m C)

 In worst case, each iteration of the while loop increments flow by 1

• Note that this running time is not polynomial in input size due to similar reasons

as Knapsack

• Curious to know more?

 More in Algorithms Adv. Course.

64

.)(
 ofout


se

efC

Multiple Sources Network

We have several sources and several targets.
Want to maximize the total flow from all sources to all targets.
Reduce to max-flow by creating a super-source and a super-sink:

65

An Application of Max Flow:

Maximum Bipartite Matching

Maximum Bipartite Matching

 A bipartite graph is a graph

G=(V,E) in which V can be

divided into two parts L and R

such that every edge in E is

between a vertex in L and a

vertex in R.

 e.g. vertices in L represent
skilled workers and vertices in
R represent jobs. An edge
connects workers to jobs they
can perform.

67

A matching in a graph is a subset M of E, such that for all
vertices v in V, at most one edge of M is incident on v.

68

A maximum matching is a matching of maximum cardinality
(maximum number of edges).

not maximum maximum

69

A Maximum Matching

No matching of cardinality 4, because only one
of v and u can be matched.

In the workers-jobs example a max-matching
provides work for as many people as possible. v

u

70

Solving the Maximum Bipartite Matching Problem

• Reduce the maximum bipartite matching problem on graph G
to the max-flow problem on a corresponding flow network G’.

 Solve using Ford-Fulkerson method.

71

Corresponding Flow Network

To form the corresponding flow network G' of the bipartite graph G:

 Add a source vertex s and edges from s to L.

 Direct the edges in E from L to R.

 Add a sink vertex t and edges from R to t.

 Assign a capacity of 1 to all edges.

Claim: max-flow in G’ corresponds to a max-bipartite-matching on G.

s

L R

t

GG'

1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

72

Solving Bipartite Matching as Max Flow

  (,) be a bipartite graph with vertex partition .L et G V E V L R

   (,) be its corresponding flow net wLe o kt r . G V E

 is a matching in ,If M G

 there is an integer-valued flow in with value | | | |en .th f G f M

if is an integer-valued fConvers low in , e y ,l f G

there is a matching in with cardinality |then | | |.M G M f

max| | max(integeT rhus |f|)M 

73

Does this mean that max |f| = max |M|?

Problem: we haven’t shown that the max flow f(u,v) is necessarily
integer-valued.

74

Integrality Theorem

If the capacity function c takes on only integral values, then:

1. The maximum flow f produced by the Ford-Fulkerson method has

the property that |f| is integer-valued.

2. For all vertices u and v the value f(u,v) of the flow is an integer.

So, max|M| = max |f|

Running Time:

Remember:

Here C is at most n,
Hence O(m C) becomes O(mn)

75

.)(
 ofout


se

efC

Example

min cut

|M| = 3  max flow =|f|= 3
76

Conclusion

 Network flow algorithms allow us to find the maximum bipartite matching

fairly easily.

 Similar techniques are applicable in other combinatorial design problems.

• Remark about Exercise 3 from week 2:

 "witches watching watches“

 It was asked to provide a counterexample for the given greedy algorithm

 Bipartite Matching exactly solves the same

 Now you have an algorithm for "witches watching watches“

77

Wednesday, LV 7 (2016-10-12)

DP Shortest Path
Given a grid with obstacles, we wish to find the shortest path from the upper
left corner (0,0) to (n,n).

Shortest path problem in a graph
One way to solve the problem is by constructing an undirected graph G=(V,E).
Let V = {(i,j) | i,j integers, 0 ≤ i ≤ n, 0 ≤ j ≤ n} and E = A ∪ D where

A = {((i,j)(i’,j’)) | |i-i’|+|j-j’|=1} is the set of vertical/horizontal edges and
U = {((i,j)(i’,j’)) | |i-i’|=1 ∧ |j-j’|=1} is the set of diagonal edges
Let le be the length of an edge:

le := 1 if e ∈ A
le :=

√
2 if e ∈ D and square (i,j) is not blocked

le := ∞ if e ∈ D and square (i,j) is blocked

The paths in G are exactly the path in the grid.

The graph construction needs O(n²) time. G has O(n²) nodes and O(n²) edges.

If we apply Dijkstra’s algorithm we can solve this shortest path problem in
O(n² ∗ log(n)). However, if we design the graph a bit more cleverly, we can
do better. If we create a directed graph and do not add the edges that goes
backwards (it will never be beneficial to go backwards in a shortest path). We
have then created a DAG and shortest paths on DAGs are quicker (O(n)).

Using DP
In the exam problem a function was already given: OPT(i,j) := length of a
shortest path from (0,0) to (i,j). (If such a function is not given, it is important
that you write this yourself!)

Let b(i,j) denote a blocked square, and b(i,j) :=

{
∞ square (i,j) is blocked
√
2 else

1

OPT(i,j) = min


OPT(i-1, j)+1 horizontal

OPT(i, j-1)+1 vertical

OPT(i-1, j-1)+ b(i,j) diagonal

Implementation, not required for the exam but we need to argue the time com-
plexity so it’s convenient! Also, you should always use for loops and memoization
instead of recursive calls.

f o r i = 0 to n :
OPT(i , 0) = i

f o r j = 0 to n :
OPT(0 , j) = j

f o r i = 1 to n :
f o r j = 1 to n :
OPT(i , j) = . . .

The solution (the path and it’s length) is given by backtracing!

Graphic TSP
Given as input an undirected graph G = (V,E) with equal-length edges (dis-
tance between two nodes, u and v, ≡ d(u,v)) we want to find a shortest tour
that visits every node at least once and starts and ends in the same node.

We write the problem as a decision problem: Given a graph G and a num-
ber t we ask: “Is there a tour of length at most t?”.

Hamiltonian Cycle

G = (V,E) is an undirected graph and the HCP asks if there is a tour that visits
every node exactly once, and starts and ends in the same node.

HCP is a known NPC.

Graphic TSP ∈ NP?
Given a tour T, can weverify that:

- T contains all nodes
- Consecutive nodes on T are joined by edges
- The total length of T is at most t

in polynomial time?

Yes we can!

2

Hamiltonian Cycle ≤p Graphic TSP
A Hamiltonian Cycle is a tour of size n (the number of nodes). We want a
function f s.t. f(G) = (H,t) s.t. G has a Hamiltonian Cycle ⇔ H has a tour of
length at most t. In our instance H := G and t := n.

Graphic TSC ∈ NP, HCP is NPC and HCP ≤p Graphic TSP, hence Graphic
TSP is NPC!

Outlook

3

	Info
	Problem
	Algorithm
	Time Complexity
	Worst case analysis: O(n)
	Examples

	Properties of O

	The Knapsack Problem
	Possible Greedy Solution
	Subset Sum (A partial Solution)
	Time Complexity
	Example Run

	Subset Sum 2.0
	Back To Knapsack

	Sequence Comparison
	Example: CREAMY <-> CARAMEL
	Algorithm
	Problem Analysis (and correctness proof)
	Recursive formula
	Example

	Time Complexity

	NP Completeness
	Find an NP-complete problem - The SAT Problem
	Example of NP-complete problem - CNF that describes vertex cover k

	K-SAT
	Proof that SAT p 3-SAT
	Proof sketch that 3-SAT p Indep. Set

	Subgraph Isomorphism
	Reduction

