
DIT410/TIN174, Artificial Intelligence Russell & Norvig, Chapters 1–2: Introduction to AI

RUSSELL & NORVIG, CHAPTERS 1–2:
INTRODUCTION TO AI

DIT410/TIN174, Artificial Intelligence

Peter Ljunglöf

21 March, 2017

1

TABLE OF CONTENTS
What is AI? (R&N 1.1–1.2)

What is intelligence?
Strong and Weak AI

A brief history of AI (R&N 1.3)
Notable AI moments, 1940–2016

Interlude: What is this course, anyway?
People, contents and deadlines

Agents (R&N chapter 2)
Rationality
Enviroment types

Philosophy of AI
Is AI possible?
Turing’s objections to AI

2

WHAT IS AI? (R&N 1.1–1.2)
WHAT IS INTELLIGENCE?

STRONG AND WEAK AI

3

WHAT IS INTELLIGENCE?

 ”It is not my aim to surprise or shock you – but the simplest
way I can summarize is to say that there are now in the world
machines that can think, that learn, and that create.
 Moreover, their ability to do these things is going to increase
rapidly until — in a visible future — the range of problems they
can handle will be coextensive with the range to which human
mind has been applied.”

by Herbert A Simon (1957)

4

STRONG AND WEAK AI

Weak AI — acting intelligently

the belief that machines can be made to act as if they are intelligent

Strong AI — being intelligent

the belief that those machines are actually thinking

Most AI researchers don’t care

“the question of whether machines can think…
…is about as relevant as whether submarines can swim.”
(Edsger W Dijkstra, 1984)

5

WEAK AI
Weak AI is a category that is flexible

as soon as we understand how an AI-program works, it appears less
“intelligent”.

And as soon as a part of AI is successful, it becomes an own research area!
E.g., large parts of advanced search, parts of language understanding, parts of
machine learning and probabilistic learning etc.

And AI is le� with the remaining hard-to-solve problems!

6

WHAT IS AN AI SYSTEM?

Do we want a system that…

thinks like a human?
cognitive neuroscience / cognitive modelling
AGI = artificial general intelligence

acts like a human?
the Turing test

thinks rationally?
“laws of thought”
from Aristotle’s syllogism to modern day theorem provers

acts rationally?
“rational agents”
maximise goal achievement, given available information

7

A BRIEF HISTORY OF AI (R&N 1.3)
NOTABLE AI MOMENTS, 1940–2016

8

NOTABLE AI MOMENTS (1940–1975)
1943 McCulloch & Pitts: Boolean circuit model of brain
1950 Alan Turing’s “Computing Machinery and Intelligence”
1951 Marvin Minsky develops a neural network machine
1950s Early AI programs: e.g., Samuel’s checkers program,

Gelernter’s Geometry Engine,
Newell & Simon’s Logic Theorist and General Problem Solver

1956 Dartmouth meeting: “Artificial Intelligence” adopted
1965 Robinson’s complete algorithm for logical reasoning
1966 Joseph Weizenbaum creates Eliza
1969 Minsky & Papert show limitations of the perceptron

Neural network research almost disappears
1971 Terry Winograd’s Shrdlu dialogue system
1972 Alain Colmerauer invents Prolog programming language

9

NOTABLE AI MOMENTS (1975–2016)
1976 MYCIN, an expert system for disease diagnosis
1980s Era of expert systems
1990s Neural networks, probability theory, AI agents
1993 RoboCup initiative to build soccer-playing robots
1997 IBM Deep Blue beats the World Chess Champion
2003 Very large datasets: genomic sequences
2007 Very large datasets: WAC (web as corpus)
2011 IBM Watson wins Jeopardy
2012 US state of Nevada permits driverless cars
2014 “Deep learning”: recommendation systems, image tagging,

board games, speech translation, pattern recognition
2016 Google AlphaGo beats the world’s 2nd best Go player, Lee Se-dol

10

INTERLUDE: WHAT IS THIS COURSE,
ANYWAY?

PEOPLE, CONTENTS AND DEADLINES

11

PEOPLE AND LITERATURE

Course website
Teachers Peter Ljunglöf, John J. Camilleri, Jonatan Kilhamn,

Inari Listenmaa, Claes Strannegård
Student representatives Caterina Curta (N2COS), Claudia Castillo (MPALG),

Ibrahim Fayaz (MPALG), Johan Ek (MPCAS),
Tarun Nandakumar (MPCAS), Yan Wang (MPALG)
(updated 22nd March)

Course book Russell & Norvig (2002/10/14)
Read it online at Chalmers library:

Note for GU students: Don’t forget to register, today!

http://chalmersgu-ai-course.github.io/

http://goo.gl/6EMRZr

12

http://chalmersgu-ai-course.github.io/
http://goo.gl/6EMRZr

COURSE CONTENTS

This is what you (hopefully) will learn during this course:

Introduction to AI history, philosophy and ethics.

Basic algorithms for searching and solving AI problems:

heuristic search,
local search,
nondeterministic search,
games and adversarial search,
constraint satisfaction problems.

Group collaboration:

write an essay,
complete a programming project.

13

WHAT IS NOT IN THIS COURSE?

This course is an introduction to AI, giving a broad overview
of the area and some basic algorithms.

We do not have the time to dig into the most recent algorithms
and techniques that are so hyped in current media.

Therefore, you will not learn how these things work:

machine learning,
deep neural networks,
self-driving cars,
beating the world champion in Go,
etc.

14

DEADLINES FOR COURSE MOMENTS

Group work: Form a group

Form a group (24 March), and sign a group contract (29 March)

Group work: Write an essay

Write a 6-page essay about AI (12 May) + review two essays (19 May)
Revise your essay according to the reviews you got (2 June)

Group work: Shrdlite programming project

Intermediate labs: A* planner (5–6 April) + interpreter (26–27 April)
Complete the final project (26 May)

Written and oral examination

Peer-corrected exam (2 May) + normal re-exams (8 June, 21 August)
Oral review of the project (29–31 May)
Individual self- and peer evaluation (28 May)

15

RECURRING COURSE MOMENTS

Lectures

Tuesday and Friday, 10:00–11:45, during weeks 12–14, 16–17

Obligatory group supervision

Wednesdays and Thursdays (mostly) during weeks 13–14, 16–21
Supervision is compulsory for all group members!

Drop-in supervision

Mondays during weeks 13–14, 17–21

Practice sessions

Tuesday and Friday, 8:00–9:45, weeks 16–17

16

GRADING
Higher grade than pass/3/G only depends on the group work!

For higher grades you can collect up to 10 bonus points:
The essay can give 0–3 points
Your reviews can give 0–1 points
Shrdlite can give 0–6 points (every extension gives 1–3 points)
Your individual bonus points can be more or less than your group’s

 Grade Bonus points
Chalmers 3

4
5

0–3
4–6
7–10

GU G
VG

0–5
6–10

17

THE WRITTEN EXAMINATION

The exam is 2nd May (in the middle of the course)

Why? So that you can focus on Shrdlite and the essay in the end

The exam is only pass/fail

Why? This course is mainly a project course
(5.0 hec group work, 2.5 hec written exam)

The exam is peer-corrected

Why? It’s not only an exam, it’s also a learning experience.
How? First you write your exam. We collect all theses, shuffle and hand
them out again, so that you will get someone else’s exam to correct.
We go through the answers on the blackboard and you correct
the exam in front of you. Finally, we check all corrections.
And don’t worry – everything will be anonymous!

18

THE ESSAY

Your project group will write a 6-page essay about the historical,
ethical and/or philosophical aspects of an AI topic.

A�er submitting your essay, you will get two other essays to read and review.

You will also get reviews on your essay, which you update and submit
a final version.

Claes Strannegård is responsible for the essay. He will organise
supervision sessions for all of you, regarding the essay.

19

SHRDLITE, THE PROGRAMMING PROJECT

Your group will implement a dialogue system for controlling a robot that lives
in a virtual block world and whose purpose in life is to move around objects
of different forms, colors and sizes.

You will program in TypeScript
Why? It’s a type-safe version of Javascript (runs in the browser),
and it’s a new language for almost all of you!

Every group will get a personal supervisor, which you meet once every week.

There are two intermediate labs, which you submit by showing them to
your supervisor.

Note: the Shrdlite webpage is quite long, and not everything makes sense
when you start the project. Make sure to visit the webpage regularly when you
are developing your project — there is a lot of important information there.

20

LET’S HAVE A LOOK AT THE WEB PAGES!
http://chalmersgu-ai-course.github.io/

21

http://chalmersgu-ai-course.github.io/

AGENTS (R&N CHAPTER 2)
RATIONALITY

ENVIROMENT TYPES

22

EXAMPLE: A VACUUM-CLEANER AGENT

Percepts: location and contents, e.g.
Actions: Le�, Right, Suck, NoOp

A simple agent function is:

If the current square is dirty, then suck;
otherwise, move to the other square.

How do we know if this is a good agent function?
What is the best function? — Is there one?
Who decides this?

(A, Dirty)

23

RATIONALITY
Fixed performance measure evaluates the environment sequence

one point per square cleaned up in time ?
one point per clean square per time step, minus one per move?
penalize for dirty squares?

A rational agent chooses any action that

maximizes the expected value of the performance measure
given the percept sequence to date

Rationality and success

Rational ≠ omniscient — percepts may not supply all relevant information
Rational ≠ clairvoyant — action outcomes may not be as expected
Hence, rational ≠ successful

T

> k

24

PEAS

To design a rational agent,
we must specify the task environment,
which consists of the following four things:

Performance measure

Environment

Actuators

Sensors

25

EXAMPLE PEAS: AUTONOMOUS CAR
The task environment for an autonomous car:

Performance measure
getting to the right place, following traffic laws,
minimising fuel consumption/time, maximising safety, …

Environment
roads, other traffic, pedestrians, road signs, passengers, …

Actuators
steering, accelerator, brake, signals, loudspeaker, …

Sensors
cameras, sonar, speedometer, GPS, odometer, microphone, …

26

ENVIROMENT TYPES: DIMENSIONS OF COMPLEXITY
Dimension Possible values
Observable? full vs. partial
Deterministic? deterministic vs. stochastic
Episodic? episodic vs. sequential
Static? static vs. dynamic (semidynamic)
Discrete? discrete vs. continuous
Number of agents single vs. multiple (competetive/cooperative)

The environment type largely determines the agent design

27

ENVIRONMENT TYPES, EXAMPLES
 Chess

(w. clock) Poker

Driving
Image

recognition
Observable? fully partially partially fully
Deterministic? determ. stochastic stochastic determ.
Episodic? sequential sequential sequential episodic
Static? semi static dynamic static
Discrete? discrete discrete continuous disc./cont.
N:o agents multiple

(compet.)
multiple

(compet.)
multiple
(cooper.)

single

The real world is (of course):
partially observable, stochastic, sequential, dynamic, continuous, multi-agent

28

DEFINING A SOLUTION

Given an informal description of a problem, what is a solution?

Typically, much is le� unspecified, but the unspecified parts
cannot be filled in arbitrarily.

Much work in AI is motivated by common-sense reasoning.
The computer needs to make common-sense conclusions
about the unstated assumptions.

29

QUALITY OF SOLUTIONS

Does it matter if the answer is wrong or answers are missing?

Classes of solutions:

An optimal solution is a best solution according to some
measure of solution quality.

A satisficing solution is one that is good enough, according
to some description of which solutions are adequate.

An approximately optimal solution is one whose measure
of quality is close to the best theoretically possible.

A probable solution is one that is likely to be a solution.

30

TYPES OF AGENTS

Simple reflex agent selects actions based on current percept
— ignores history

Model-based reflex agent maintains an internal state that depends
on the percept history

Goal-based agent has a goal that describes situations
that are desirable

Utility-based agent has a utility function that measures
the performance

Learning agent any of the above agents can be a learning agent
— learning can be online or offline

31

PHILOSOPHY OF AI
IS AI POSSIBLE?

TURING’S OBJECTIONS TO AI

32

IS AI POSSIBLE?

There are different opinions…

…some are slightly positive:
“every […] feature of intelligence can be so precisely described that a
machine can be made to simulate it” (McCarthy et al, 1955)

…and some lean towards the negative:
“AI […] stands not even a ghost of a chance of producing durable results”
(Sayre, 1993)

It’s all in the definitions:

what do we mean by “thinking” and “intelligence”?

33

“COMPUTING MACHINERY AND INTELLIGENCE”

The most important paper in AI, of all times:

(and I’m not the only one who thinks that…)

“Computing Machinery and Intelligence” (Turing, 1950)

introduced the “imitation game” (Turing test)

discussed objections against intelligent machines, including
almost every objection that has been raised since then

it’s also easy to read… so you really have to read it!

34

TURING’S OBJECTIONS TO AI [1–3]

(1) The Theological Objection

“Thinking is a function of man’s immortal soul. God has given
an immortal soul to every man and woman, but not to any other
animal or to machines. Hence no animal or machine can think.”

(2) The “Heads in the Sand” Objection

“The consequences of machines thinking would be too dreadful.
Let us hope and believe that they cannot do so.”

(3) The Mathematical Objection

Based on Gödel’s incompleteness theorem.

35

TURING’S OBJECTIONS TO AI [4–5]

(4) The Argument from Consciousness

“No mechanism could feel […] pleasure at its successes,
grief when its valves fuse, […], be angry or depressed
when it cannot get what it wants.”

(5) Arguments from Various Disabilities

“you can make machines do all the things you have mentioned
but you will never be able to make one to do X.”

where X can… “be kind, resourceful, beautiful, friendly, […],
have a sense of humour, tell right from wrong, make mistakes,
fall in love, enjoy strawberries and cream, […], use words properly,
be the subject of its own thought, […], do something really new.”

36

TURING’S OBJECTIONS TO AI [6–8]

(6) Lady Lovelace’s Objection

“The Analytical Engine has no pretensions to originate anything.
It can do whatever we know how to order it to perform.”

(7) Argument from Continuity in the Nervous System

“one cannot expect to be able to mimic the behaviour of
the nervous system with a discrete-state system.”

(8) The Argument from Informality of Behaviour

“if each man had a definite set of rules of conduct by which
he regulated his life he would be no better than a machine.
But there are no such rules, so men cannot be machines.”

37

THE FINAL OBJECTION [9]

(9) The Argument from Extrasensory Perception

this was the strongest argument according to Turing…

“the statistical evidence […] is overwhelming”

“Let us play the imitation game, using as witnesses a man who is good as
a telepathic receiver, and a digital computer. The interrogator can ask such
questions as ‘What suit does the card in my right hand belong to?’ The man by
telepathy or clairvoyance gives the right answer 130 times out of 400 cards.
The machine can only guess at random, and perhaps gets 104 right, so the
interrogator makes the right identification.”

38

STRONG AI: BRAIN REPLACEMENT

The brain replacement experiment

by Searle (1980) and Moravec (1988)

suppose we gradually replace each neuron in your head with
an electronic copy…

…what will happen to your mind, your consciousness?

Searle argues that you will gradually feel dislocated from your body

Moravec argues you won’t notice anything

39

STRONG AI: THE CHINESE ROOM

The Chinese room experiment (Searle, 1980)

an English-speaking person takes input and generates answers in Chinese

he/she has a rule book, and stacks of paper

the person gets input, follows the rules and produces output

i.e., the person is the CPU, the rule book is the program and
the papers is the storage device

Does the system understand Chinese?

40

THE TECHNOLOGICAL SINGULARITY

Will AI lead to superintelligence?

“…ever accelerating progress of technology and changes in the mode of
human life, which gives the appearance of approaching some essential
singularity in the history of the race beyond which human affairs, as we
know them, could not continue” (von Neumann, mid-1950s)

“We will successfully reverse-engineer the human brain by the mid-2020s.
By the end of that decade, computers will be capable of human-level
intelligence.” (Kurzweil, 2011)

“There is not the slightest reason to believe in a coming singularity.”
(Pinker, 2008)

41

ETHICAL ISSUES OF AI

What are the possible risks of using AI technology?

AI might be used towards undesirable ends

e.g., surveillance by speech recognition, detection of “terrorist phrases”

AI might result in a loss of accountability

what’s the legal status of a self-driving car?

or a medical expert system?

AI might mean the end of the human race

what if the new superintelligent race won’t obey Asimov’s robot laws?

42

DIT410/TIN174, Artificial Intelligence Chapter 3: Classical search algorithms

CHAPTER 3: CLASSICAL SEARCH
ALGORITHMS

DIT410/TIN174, Artificial Intelligence

Peter Ljunglöf

24 March, 2017

1

TABLE OF CONTENTS
Introduction (R&N 3.1–3.3)

Graphs and searching
Example problems
A generic searching algorithm

Uninformed search (R&N 3.4)
Depth-first search
Breadth-first search
Uniform-cost search
Uniform-cost search

Heuristic search (R&N 3.5–3.6)
Greedy best-first search
A* search
Admissible and consistent heuristics

2

INTRODUCTION (R&N 3.1–3.3)
GRAPHS AND SEARCHING

EXAMPLE PROBLEMS

A GENERIC SEARCHING ALGORITHM

3

GRAPHS AND SEARCHING

O�en we are not given an algorithm to solve a problem, but only
a specification of a solution — we have to search for it.

A typical problem is when the agent is in one state, it has a set of
deterministic actions it can carry out, and wants to get to a goal state.

Many AI problems can be abstracted into the problem of finding
a path in a directed graph.

O�en there is more than one way to represent a problem as a graph.

4

STATE-SPACE SEARCH: COMPLEXITY DIMENSIONS

Observable? fully
Deterministic? deterministic
Episodic? episodic
Static? static
Discrete? discrete
N:o of agents single

Most complex problems (partly observable, stochastic, sequential)
usualy have components using state-space search.

5

DIRECTED GRAPHS

A graph consists of a set of nodes and a set of ordered pairs of nodes,
called arcs.

Node is a neighbor of if there is an arc from to .
That is, if .

A path is a sequence of nodes such that .

The length of path is .

A solution is a path from a start node to a goal node,
given a set of start nodes and goal nodes.

(Russel & Norvig sometimes call the graph nodes states).

N A

n2 n1 n1 n2

(,) ∈ An1 n2

(, , … ,)n0 n1 nk (,) ∈ Ani−1 ni

(, , … ,)n0 n1 nk k

6

EXAMPLE: TRAVEL IN ROMANIA
We want to drive from Arad to Bucharest in Romania

7

EXAMPLE: GRID GAME
Grid game: Rob needs to collect coins ,

without running out of fuel, and end up at location (1,1):

What is a good representation of the search states and the goal?

, , ,C1 C2 C3 C4

8

EXAMPLE: VACUUM-CLEANING AGENT

States [room A dirty?, room B dirty?, robot location]
Initial state any state
Actions le�, right, suck, do-nothing
Goal test [false, false, –]
Path cost 1 per action (0 for do-nothing)

9

EXAMPLE: THE 8-PUZZLE

States a 3 x 3 matrix of integers
Initial state any state
Actions move the blank space: le�, right, up, down
Goal test equal to the goal state
Path cost 1 action (0 for do-nothing)

10

EXAMPLE: THE 8-QUEENS PROBLEM

States any arrangement of 0 to 8 queens on the board
Initial state no queens on the board
Actions add a queen to any empty square
Goal test 8 queens on the board, none attacked
Path cost 1 per move

This gives us possible paths to explore!64 × 63 × ⋯ × 57 ≈ 1.8 × 1014

11

EXAMPLE: THE 8-QUEENS PROBLEM (ALTERNATIVE)

States one queen per column in le�most columns, none attacked
Initial state no queens on the board
Actions add a queen to a square in the le�most empty column, make sure that no queen is attacked
Goal test 8 queens on the board, none attacked
Path cost 1 per move

Using this formulation, we have only 2,057 paths!

12

EXAMPLE: KNUTH’S CONJECTURE
Donald Knuth conjectured that all positive integers can be obtained by starting with

the number 4 and applying some combination of the factorial, square root, and floor.

States positive numbers
Initial state 4
Actions apply factorial, square root, or floor operation
Goal test any positive integer (e.g., 5)
Path cost 1 per move

= 5

⎢

⎣
⎢
⎢ (4!)!‾ ‾‾‾√‾ ‾‾‾‾‾‾√

‾ ‾‾‾‾‾‾‾‾√
‾ ‾‾‾‾‾‾‾‾‾‾‾

√
‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾

⎷

⎥

⎦
⎥
⎥

(1, 2, 2.5, 3, , 1.23 ⋅ , , …)2‾√ 10456 2‾√‾ ‾‾√

13

EXAMPLE: ROBOTIC ASSEMBLY

States real-valued coordinates of robot joint angles parts of the object to be assembled
Actions continuous motions of robot joints
Goal test complete assembly of the object
Path cost time to execute

14

HOW DO WE SEARCH IN A GRAPH?

A generic search algorithm:

Given a graph, start nodes, and a goal description, incrementally
explore paths from the start nodes.

Maintain a frontier of nodes that are to be explored.

As search proceeds, the frontier expands into the unexplored nodes
until a goal node is encountered.

The way in which the frontier is expanded defines the search strategy.

15

ILLUSTRATION OF SEARCHING IN A GRAPH

16

TURNING TREE SEARCH INTO GRAPH SEARCH
Tree search: Don’t check if nodes are visited multiple times
Graph search: Keep track of visited nodes

function Search(graph, initialState, goalState):

initialise frontier using the initialState
initialise exploredSet to the empty set
while frontier is not empty:

select and remove node from frontier
if node.state is a goalState then return node
add node to exploredSet
for each child in ExpandChildNodes(node, graph):

add child to frontier … if child is not in frontier or exploredSet
return failure

17

GRAPH NODES VS. SEARCH NODES
The nodes used while searching are not the same as the graph nodes:

Search nodes should contain more information:
the corresponding graph node (called state in R&N)
the total path cost from the start node
the estimated (heuristic) cost to the goal
enough information to be able to calculate the final path

procedure ExpandChildNodes(parent, graph):

for each (action, child, edgecost) in graph.successors(parent.state):
yield new SearchNode(child,

 …total cost so far…,
 …estimated cost to goal…,
 …information for calculating final path…)

18

UNINFORMED SEARCH (R&N 3.4)
DEPTH-FIRST SEARCH

BREADTH-FIRST SEARCH

UNIFORM-COST SEARCH

19

QUESTION TIME: DEPTH-FIRST SEARCH
Which shaded goal will a depth-first search find first?

20

QUESTION TIME: BREADTH-FIRST SEARCH
Which shaded goal will a breadth-first search find first?

21

DEPTH-FIRST SEARCH

Depth-first search treats the frontier as a stack.

It always selects one of the last elements added to the frontier.

If the list of nodes on the frontier is , then:

 is selected (and removed).
Nodes that extend are added to the front of the stack (in front of).

 is only selected when all nodes from have been explored.

[, , , …]p1 p2 p3

p1

p1 p2

p2 p1

22

ILLUSTRATIVE GRAPH: DEPTH-FIRST SEARCH

23

COMPLEXITY OF DEPTH-FIRST SEARCH

Does DFS guarantee to find the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if there is a solution?

What is the time complexity as a function of the path length?

What is the space complexity as a function of the path length?

How does the goal affect the search?

24

BREADTH-FIRST SEARCH

Breadth-first search treats the frontier as a queue.

It always selects one of the earliest elements added to the frontier.

If the list of paths on the frontier is , then:

 is selected (and removed).
Its neighbors are added to the end of the queue, a�er .

 is selected next.

[, , … ,]p1 p2 pr

p1

pr

p2

25

ILLUSTRATIVE GRAPH: BREADTH-FIRST SEARCH

26

COMPLEXITY OF BREADTH-FIRST SEARCH

Does BFS guarantee to find the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if there is a solution?

What is the time complexity as a function of the path length?

What is the space complexity as a function of the path length?

How does the goal affect the search?

27

UNIFORM-COST SEARCH
Weighted graphs:

Sometimes there are costs associated with arcs.
The cost of a path is the sum of the costs of its arcs.

An optimal solution is one with minimum cost.

Uniform-cost search:
Uniform-cost search selects a path on the frontier with the lowest cost.
The frontier is a priority queue ordered by path cost.
It finds a least-cost path to a goal node — i.e., uniform-cost search is optimal
When arc costs are equal breadth-first search.

cost(, … ,) = (,)n0 nk ∑
i=1

k

∣∣ ni−1 ni ∣∣

⇒

28

HEURISTIC SEARCH (R&N 3.5–3.6)
GREEDY BEST-FIRST SEARCH

A* SEARCH

ADMISSIBLE AND CONSISTENT HEURISTICS

29

HEURISTIC SEARCH

Previous methods don’t use the goal to select a path to explore.

Main idea: don’t ignore the goal when selecting paths.

O�en there is extra knowledge that can guide the search: heuristics.

 is an estimate of the cost of the shortest path from node
to a goal node.

 needs to be efficient to compute.

 is an underestimate if there is no path from to a goal
with cost less than .

An admissible heuristic is a nonnegative heuristic function that is
an underestimate of the actual cost of a path to a goal.

h(n) n

h(n)

h(n) n

h(n)

30

EXAMPLE HEURISTIC FUNCTIONS

Here are some example heuristic functions:

If the nodes are points on a Euclidean plane and the cost is the distance,
 can be the straight-line distance (SLD) from n to the closest goal.

If the nodes are locations and cost is time, we can use the distance to
a goal divided by the maximum speed, .

If the goal is to collect all of the coins and not run out of fuel, we can
use an estimate of how many steps it will take to collect the coins
and return to goal position, without caring about the fuel consumption.

A heuristic function can be found by solving a simpler (less constrained)
version of the problem.

h(n)

h(n) = d(n)/vmax

31

EXAMPLE HEURISTIC: ROMANIA DISTANCES

32

GREEDY BEST-FIRST SEARCH

Main idea: select the path whose end is closest to a goal
according to the heuristic function.

Best-first search selects a path on the frontier with minimal -value.

It treats the frontier as a priority queue ordered by .

h

h

33

GREEDY SEARCH EXAMPLE: ROMANIA

This is not the shortest path!

34

GREEDY SEARCH IS NOT OPTIMAL
Greedy search returns the path: Arad–Sibiu–Fagaras–Bucharest (450km)
The optimal path is: Arad–Sibiu–Rimnicu–Pitesti–Bucharest (418km)

35

BEST-FIRST SEARCH AND INFINITE LOOPS

Best-first search might fall into an infinite loop!

36

COMPLEXITY OF BEST-FIRST SEARCH

Does best-first search guarantee to find the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if there is a solution?

What is the time complexity as a function of the path length?

What is the space complexity as a function of the path length?

How does the goal affect the search?

37

A* SEARCH

A* search uses both path cost and heuristic values.

 is the cost of path .

 estimates the cost from the end node of to a goal.

, estimates the total path cost
of going from the start node, via path to a goal:

cost(p) p

h(p) p

f (p) = cost(p) + h(p)

p

nstart − →−−−
path p

cost(p)

 goal− →−−−−
estimate

h(p)

f (p)

38

A* SEARCH

A* is a mix of lowest-cost-first and best-first search.

It treats the frontier as a priority queue ordered by .

It always selects the node on the frontier with
the lowest estimated distance from the start
to a goal node constrained to go via that node.

f (p)

39

COMPLEXITY OF A* SEARCH

Does A* search guarantee to find the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if there is a solution?

What is the time complexity as a function of the path length?

What is the space complexity as a function of the path length?

How does the goal affect the search?

40

A* SEARCH EXAMPLE: ROMANIA

A* guarantees that this is the shortest path!

41

A* SEARCH IS OPTIMAL
The optimal path is: Arad–Sibiu–Rimnicu–Pitesti–Bucharest (418km)

42

A* ALWAYS FINDS A SOLUTION

A* will always find a solution if there is one, because:

The frontier always contains the initial part of a path to a goal,
before that goal is selected.

A* halts, because the costs of the paths on the frontier keeps increasing,
and will eventually exceed any finite number.

43

ADMISSIBILITY (OPTIMALITY) OF A*

If there is a solution, A* always finds an optimal one first, provided that:

the branching factor is finite,

arc costs are bounded above zero
(i.e., there is some such that all
of the arc costs are greater than), and

 is nonnegative and an underestimate of
the cost of the shortest path from to a goal node.

ϵ > 0

ϵ

h(n)

n

44

A* FINDS AN OPTIMAL SOLUTION FIRST

The first path that A* finds to a goal is an optimal path, because:

The -value for any node on an optimal solution path
is less than or equal to the -value of an optimal solution.
This is because is an underestimate of the actual cost

Thus, the -value of a node on an optimal solution path
is less than the -value for any non-optimal solution.

Thus, a non-optimal solution can never be chosen while
a node exists on the frontier that leads to an optimal solution.
Because an element with minimum -value is chosen at each step

So, before it can select a non-optimal solution, it will have to pick
all of the nodes on an optimal path, including each of the optimal solutions.

f

f

h

f

f

f

45

ILLUSTRATION: WHY IS A* ADMISSIBLE?

A* gradually adds “ -contours” of nodes (cf. BFS adds layers).

Contour has all nodes with , where .

f

i f = fi <fi fi+1

46

QUESTION TIME: HEURISTICS FOR THE 8 PUZZLE
 = number of misplaced tiles
 = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

 = 8
 = 3+1+2+2+2+3+3+2 = 18

(n)h1

(n)h2

(StartState)h1

(StartState)h2

47

DOMINATING HEURISTICS

If (admissible) for all ,
then dominates and is better for search.

Typical search costs (for 8-puzzle):

depth = 14 DFS ≈ 3,000,000 nodes
A*() = 539 nodes
A*() = 113 nodes

depth = 24 DFS ≈ 54,000,000,000 nodes
A*() = 39,135 nodes
A*() = 1,641 nodes

Given any admissible heuristics , , the maximum heuristics
is also admissible and dominates both:

(n) ≥ (n)h2 h1 n

h2 h1

h1

h2

h1

h2

ha hb h(n)

h(n) = max((n), (n))ha hb

48

HEURISTICS FROM A RELAXED PROBLEM

Admissible heuristics can be derived from the exact solution cost of
a relaxed problem:

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is
never greater than the optimal solution cost of the real problem

(n)h1

(n)h2

49

GRAPH-SEARCH = MULTIPLE-PATH PRUNING

Graph search keeps track of visited nodes, so we don’t visit the same node twice.

Suppose that the first time we visit a node is not via the most optimal path

 then graph search will return a suboptimal path

Under which circumstances can we guarantee that A* graph search is optimal?

⇒

50

WHEN IS A* GRAPH SEARCH OPTIMAL?

Suppose path to was selected, but there is a shorter path to .

Suppose path ends at node .

 was selected before , which means that: .

Suppose is the actual cost of a path from to .
The path to via is shorter than , i.e.: .

Combining the two:

So, the problem won’t occur if .

p n p′ n

p′ n′

p p′ cost(p) + h(n) ≤ cost() + h()p′ n′

cost(, n)n′ n′ n

n p′ p cost() + cost(, n) < cost(p)p′ n′

cost(, n) < cost(p) − cost() ≤ h() − h(n)n′ p′ n′

|h() − h(n)| ≤ cost(, n)n′ n′

51

CONSISTENCY, OR MONOTONICITY

A heuristic function is consistent (or monotone) if
 for every arc .

(This is a form of triangle inequality)

If is consistent, then A* graph search will always finds
the shortest path to a goal.

This is a strengthening of admissibility.

h

|h(m) − h(n)| ≤ cost(m, n) (m, n)

h

52

SUMMARY OF OPTIMALITY OF A*

A* tree search is optimal if:

the heuristic function is admissible
i.e., is nonnegative and an underestimate of the actual cost
i.e., , for all nodes

A* graph search is optimal if:

the heuristic function is consistent
i.e., , for all arcs

h(n)

h(n)

h(n) ≤ cost(n, goal) n

h(n)

|h(m) − h(n)| ≤ cost(m, n) (m, n)

53

SUMMARY OF TREE SEARCH STRATEGIES
Search
strategy

Frontier
selection

Halts if
solution?

Halts if no
solution?

Space
usage

Depth first Last node added No No Linear
Breadth first First node added Yes No Exp

Best first Global min No No Exp

Lowest cost first Minimal Yes No Exp

A* Minimal Yes No Exp

Halts if: If there is a path to a goal, it can find one, even on infinite graphs.
Halts if no: Even if there is no solution, it will halt on a finite graph (with cycles).
Space: Space complexity as a function of the length of the current path.

h(p)

cost(p)

f (p)

54

EXAMPLE DEMO
Here is an example demo of several different search algorithms, including A*.

Furthermore you can play with different heuristics:

Note that this demo is tailor-made for planar grids,
which is a special case of all possible search graphs.

http://qiao.github.io/PathFinding.js/visual/

55

http://qiao.github.io/PathFinding.js/visual/

DIT410/TIN174, Artificial Intelligence Chapters 3–4: More search algorithms

CHAPTERS 3–4: MORE SEARCH
ALGORITHMS

DIT410/TIN174, Artificial Intelligence

Peter Ljunglöf

28 March, 2017

1

TABLE OF CONTENTS
Heuristic search (R&N 3.5–3.6)

Greedy best-first search (3.5.1)
A* search (3.5.2)
Admissible and consistent heuristics (3.6–3.6.2)

More search strategies (R&N 3.4–3.5)
Iterative deepening (3.4.4–3.4.5)
Bidirectional search (3.4.6)
Memory-bounded A* (3.5.3)

Local search (R&N 4.1)
Hill climbing search (4.1.1–4.1.2)
Population-based methods (4.1.3–4.1.4)
Evaluating randomized algorithms (not in R&N)

2

HEURISTIC SEARCH (R&N 3.5–3.6)
GREEDY BEST-FIRST SEARCH (3.5.1)

A* SEARCH (3.5.2)

ADMISSIBLE AND CONSISTENT HEURISTICS (3.6–3.6.2)

3

THE GENERIC TREE SEARCH ALGORITHM
Tree search: Don’t check if nodes are visited multiple times

function Search(graph, initialState, goalState):

initialise frontier using the initialState
while frontier is not empty:

select and remove node from frontier
if node.state is a goalState then return node
for each child in ExpandChildNodes(node, graph):

add child to frontier
return failure

4

DEPTH-FIRST AND BREADTH-FIRST SEARCH
THESE ARE THE TWO BASIC SEARCH ALGORITHMS

Depth-first search (DFS)
implement the frontier as a Stack
space complexity:
incomplete: might fall into an infinite loop, doesn’t return optimal solution

Breadth-first search (BFS)

implement the frontier as a Queue
space complexity:
complete: always finds a solution, if there is one
(when edge costs are constant, BFS is also optimal)

O(bm)

O()bm

5

COST-BASED SEARCH
IMPLEMENT THE FRONTIER AS A PRIORITY QUEUE, ORDERED BY

Uniform-cost search (this is not a heuristic algorithm)
expand the node with the lowest path cost

complete and optimal

Greedy best-first search

expand the node which is closest to the goal (according to some heuristics)

incomplete: might fall into an infinite loop, doesn’t return optimal solution

A* search

expand the node which has the lowest estimated cost from start to goal
 = estimated cost of the cheapest solution through

complete and optimal (if is admissible/consistent)

f (n)

f (n) = g(n)

f (n) = h(n)

f (n) = g(n) + h(n) n

h(n)

6

A* TREE SEARCH IS OPTIMAL!

A* always finds an optimal solution first, provided that:

the branching factor is finite,

arc costs are bounded above zero
(i.e., there is some such that all
of the arc costs are greater than), and

 is admissible

i.e., is nonnegative and an underestimate of
the cost of the shortest path from to a goal node.

ϵ > 0

ϵ

h(n)

h(n)

n

7

THE GENERIC GRAPH SEARCH ALGORITHM
Tree search: Don’t check if nodes are visited multiple times
Graph search: Keep track of visited nodes

function Search(graph, initialState, goalState):

initialise frontier using the initialState
initialise exploredSet to the empty set
while frontier is not empty:

select and remove node from frontier
if node.state is a goalState then return node
add node to exploredSet
for each child in ExpandChildNodes(node, graph):

if child is not in frontier or exploredSet:
add child to frontier

return failure

8

GRAPH-SEARCH = MULTIPLE-PATH PRUNING

Graph search keeps track of visited nodes, so we don’t visit the same node twice.

Suppose that the first time we visit a node is not via the most optimal path

 then graph search will return a suboptimal path

Under which circumstances can we guarantee that A* graph search is optimal?

⇒

9

WHEN IS A* GRAPH SEARCH OPTIMAL?

If is consistent, then A* graph search is optimal:

Consistency is defined as: for all arcs

Lemma: the values along any path are nondecreasing:
Proof: , therefore:

;
therefore: , i.e., is nondecreasing

Theorem: whenever A* expands a node , the optimal path to has been
found

Proof: Assume this is not true;
then there must be some
still on the frontier, which is on
the optimal path to ;
but ;
and then must already have
been expanded contradiction!

h

h() ≤ cost(, n) + h(n)n′ n′ (, n)n′

f [… , , n, …]n′

g(n) = g() + cost(, n)n′ n′

f (n) = g(n) + h(n) = g() + cost(, n) + h(n) ≥ g() + h()n′ n′ n′ n′

f (n) ≥ f ()n′ f

n n

n′

n

f () ≤ f (n)n′

n′

⟹

10

STATE-SPACE CONTOURS

The values in A* are nondecreasing, therefore:

first A* expands all nodes with

then A* expands all nodes with

finally A* expands all nodes with

A* will not expand any nodes with ,
where is the cost of an optimal solution.

f

f (n) < C

f (n) = C

f (n) > C

f (n) > C∗

C∗

11

SUMMARY OF OPTIMALITY OF A*

A* tree search is optimal if:

the heuristic function is admissible
i.e., is nonnegative and an underestimate of the actual cost
i.e., , for all nodes

A* graph search is optimal if:

the heuristic function is consistent (or monotone)
i.e., , for all arcs

h(n)

h(n)

h(n) ≤ cost(n, goal) n

h(n)

|h(m) − h(n)| ≤ cost(m, n) (m, n)

12

SUMMARY OF TREE SEARCH STRATEGIES
Search
strategy

Frontier
selection

Halts if
solution?

Halts if no
solution?

Space
usage

Depth first Last node added No No Linear
Breadth first First node added Yes No Exp

Greedy best first Minimal No No Exp

Uniform cost Minimal Optimal No Exp

A* Optimal* No Exp

*Provided that is admissible.

Halts if: If there is a path to a goal, it can find one, even on infinite graphs.
Halts if no: Even if there is no solution, it will halt on a finite graph (with cycles).
Space: Space complexity as a function of the length of the current path.

h(n)

g(n)

f (n) = g(n) + h(n)

h(n)

13

RECAPITULATION: HEURISTICS FOR THE 8 PUZZLE
 = number of misplaced tiles
 = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

 = 8
 = 3+1+2+2+2+3+3+2 = 18

(n)h1

(n)h2

(StartState)h1

(StartState)h2

14

DOMINATING HEURISTICS

If (admissible) for all ,
then dominates and is better for search.

Typical search costs (for 8-puzzle):

depth = 14 DFS ≈ 3,000,000 nodes
A*() = 539 nodes
A*() = 113 nodes

depth = 24 DFS ≈ 54,000,000,000 nodes
A*() = 39,135 nodes
A*() = 1,641 nodes

Given any admissible heuristics , , the maximum heuristics
is also admissible and dominates both:

(n) ≥ (n)h2 h1 n

h2 h1

h1

h2

h1

h2

ha hb h(n)

h(n) = max((n), (n))ha hb

15

HEURISTICS FROM A RELAXED PROBLEM

Admissible heuristics can be derived from the exact solution cost of
a relaxed problem:

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is
never greater than the optimal solution cost of the real problem

(n)h1

(n)h2

16

NON-ADMISSIBLE (NON-CONSISTENT) A* SEARCH

A* search with admissible (consistent) heuristics is optimal

But what happens if the heuristics is non-admissible?

i.e., what if , for some ?
the solution is not guaranteed to be optimal…
…but it will find some solution!

Why would we want to use a non-admissible heuristics?

sometimes it’s easier to come up with a heuristics that is almost admissible
and, o�en, the search terminates faster!

h(n) > c(n, goal) n

17

EXAMPLE DEMO
Here is an example demo of several different search algorithms, including A*.

Furthermore you can play with different heuristics:

Note that this demo is tailor-made for planar grids,
which is a special case of all possible search graphs.

http://qiao.github.io/PathFinding.js/visual/

18

http://qiao.github.io/PathFinding.js/visual/

MORE SEARCH STRATEGIES (R&N 3.4–3.5)
ITERATIVE DEEPENING (3.4.4–3.4.5)

BIDIRECTIONAL SEARCH (3.4.6)

MEMORY-BOUNDED HEURISTIC SEARCH (3.5.3)

19

ITERATIVE DEEPENING

BFS is guaranteed to halt but uses exponential space.
DFS uses linear space, but is not guaranteed to halt.

Idea: take the best from BFS and DFS — recompute elements of the frontier rather
than saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.
Depth-bounded DFS can do this in linear space.

Iterative deepening search calls depth-bounded DFS with increasing bounds:

If a path cannot be found at depth-bound, look for a path at depth-bound + 1.
Increase depth-bound when the search fails unnaturally
(i.e., if depth-bound was reached).

20

ITERATIVE DEEPENING EXAMPLE

Depth bound = 3

21

ITERATIVE-DEEPENING SEARCH

function IDSearch(graph, initialState, goalState)
for limit in 0, 1, 2, …:

result := DepthLimitedSearch([initialState], limit)
if result ≠ cutoff then return result

function DepthLimitedSearch(, limit):

if is a goalState then return path
else if limit = 0 then return cutoff
else:

failureType := failure
for each neighbor of :

result := DepthLimitedSearch(, limit–1)
if result is a path then return result
else if result = cutoff then failureType := cutoff

return failureType

[, … ,]n0 nk

nk [, … ,]n0 nk

n nk

[, … , , n]n0 nk

22

ITERATIVE DEEPENING COMPLEXITY
Complexity with solution at depth and branching factor :

level breadth-first iterative deepening # nodes

total

Numerical comparison for and :

BFS = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
IDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Note: IDS recalculates shallow nodes several times,
but this doesn’t have a big effect compared to BFS!

k b

1

2

⋮

k − 1

k

1

1

⋮

1

1

k

k − 1

⋮

2

1

b

b
2

⋮

b
k−1

b
k

≥ b
k

≤ b
k()b

b−1

2

k = 5 b = 10

23

BIDIRECTIONAL SEARCH (3.4.6)
DIRECTION OF SEARCH

The definition of searching is symmetric: find path from start nodes to goal node or
from goal node to start nodes.

Forward branching factor: number of arcs going out from a node.

Backward branching factor: number of arcs going into a node.

Search complexity is . Therefore, we should use forward search if forward
branching factor is less than backward branching factor, and vice versa.

Note: when a graph is dynamically constructed, the backwards graph may not be
available.

O()bn

24

BIDIRECTIONAL SEARCH

Idea: search backward from the goal and forward from the start simultaneously.

This can result in an exponential saving, because .

The main problem is making sure the frontiers meet.

One possible implementation:

Use BFS to gradually search backwards from the goal,
building a set of locations that will lead to the goal.

this can be done using dynamic programming

Interleave this with forward heuristic search (e.g., A*)
that tries to find a path to these interesting locations.

2 ≪bk/2 bk

25

DYNAMIC PROGRAMMING

Idea: for statically stored graphs, build a table of the actual distance ,
of the shortest path from node to a goal.

This can be built backwards from the goal:
= if then

else

The calculation of can be interleaved with a forward heuristic search.

dist(n)

n

dist(n) isGoal(n) 0

(|(n, m)| + dist(m))min(n,m)∈G

dist

26

MEMORY-BOUNDED A* (3.5.3)

The biggest problem with A* is the space usage.
Can we make an iterative deepening version?

IDA*: use the value as the cutoff cost
the cutoff is the smalles value that exceeded the previous cutoff
o�en useful for problems with unit step costs
problem: with real-valued costs, it risks regenerating too many nodes

RBFS: recursive best-first search
similar to DFS, but continues along a path until

 is the value of the best alternative path from an ancestor
if , recursion unwinds to alternative path
problem: regenerates too many nodes

SMA* and MA*: (simplified) memory-bounded A*
uses all available memory
when memory is full, it drops the worst leaf node from the frontier

f

f

f (n) > limit

limit f

f (n) > limit

27

LOCAL SEARCH (R&N 4.1)
HILL CLIMBING (4.1.1–4.1.2)

POPULATION-BASED METHODS (4.1.3–4.1.4)

28

ITERATIVE BEST IMPROVEMENT
In many optimization problems, the path is irrelevant

the goal state itself is the solution

Then the state space can be the set of “complete” configurations

e.g., for 8-queens, a configuration can be any board with 8 queens
(it is irrelevant in which order the queens are added)

In such cases, we can use iterative improvement algorithms;
we keep a single “current” state, and try to improve it

e.g., for 8-queens, we start with 8 queens on the board,
and gradually move some queen to a better place

The goal would be to find an optimal configuration

e.g., for 8-queens, where no queen is threatened

This takes constant space, and is suitable for online and offline search

29

EXAMPLE: -QUEENS

Put queens on an board, in separate columns

Move a queen to reduce the number of conflicts;
repeat until we cannot move any queen anymore
 then we are at a local maximum, hopefully it is global too

This almost always solves -queens problems
almost instantaneously for very large (e.g., = 1 million)

n

n n × n

⇒

n

n n

30

EXAMPLE: 8-QUEENS

Move a queen within its column, choose the minimum n:o of conflicts

the best moves are marked above (conflict value: 12)
a�er 5 steps we reach a local minimum (conflict value: 1)

31

EXAMPLE: TRAVELLING SALESPERSON

Start with any complete tour, and perform pairwise exchanges

Variants of this approach get within 1% of optimal
very quickly with thousands of cities

32

HILL CLIMBING SEARCH (4.1.1–4.1.2)
Also called gradient/steepest ascent/descent,

or greedy local search.

function HillClimbing(graph, initialState):
current := initialState
loop:

neighbor := a highest-valued successor of current
if neighbor.value ≤ current.value then return current
current := neighbor

33

PROBLEMS WITH HILL CLIMBING
Local maxima — Ridges — Plateaux

34

RANDOMIZED ALGORITHMS
Consider two methods to find a minimum value:

Greedy ascent: start from some position,
keep moving upwards, and report maximum value found
Pick values at random, and report maximum value found

Which do you expect to work better to find a global maximum?

Can a mix work better?

35

RANDOMIZED HILL CLIMBING

As well as upward steps we can allow for:

Random steps: (sometimes) move to a random neighbor.

Random restart: (sometimes) reassign random values to all variables.

Both variants can be combined!

36

1-DIMENSIONAL ILLUSTRATIVE EXAMPLE

Two 1-dimensional search spaces; you can step right or le�:

Which method would most easily find the global maximum?
random steps or random restarts?

What if we have hundreds or thousands of dimensions?
…where different dimensions have different structure?

37

SIMULATED ANNEALING
Simulated annealing is an implementation of random steps:

function SimulatedAnnealing(problem, schedule):
current := problem.initialState
for t in 1, 2, …:

T := schedule(t)
if T = 0 then return current
next := a randomly selected neighbor of current

 := next.value – current.value
if > 0 or with probability :

current := next

T is the “cooling temperature”, which decreases slowly towards 0
The cooling speed is decided by the schedule

ΔE

ΔE e
ΔE/T

38

POPULATION-BASED METHODS (4.1.3–4.1.4)
LOCAL BEAM SEARCH

Idea: maintain a population of states in parallel, instead of one.

At every stage, choose the best out of all of the neighbors.
when , it is normal hill climbing search
when , it is breadth-first search

The value of lets us limit space and parallelism.

Note: this is not the same as searches run in parallel!

Problem: quite o�en, all states end up on the same local hill.

k

k

k = 1

k = ∞

k

k

k

39

STOCHASTIC BEAM SEARCH

Similar to beam search, but it chooses the next individuals probabilistically.

The probability that a neighbor is chosen is proportional to its heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Similar to natural selection:
each individual mutates and the fittest ones survive.

k

40

GENETIC ALGORITHMS
Similar to stochastic beam search,
but pairs of individuals are combined to create the offspring.

For each generation:
Randomly choose pairs of individuals where
the fittest individuals are more likely to be chosen.
For each pair, perform a cross-over:
form two offspring each taking different parts of their parents:
Mutate some values.

Stop when a solution is found.

41

 QUEENS ENCODED AS A GENETIC ALGORITHM

The queens problem can be encoded as numbers :

n

n n 1 … n

42

EVALUATING RANDOMIZED ALGORITHMS
(NOT IN R&N)

How can you compare three algorithms A, B and C, when

A solves the problem 30% of the time very quickly but doesn’t halt for the
other 70% of the cases

B solves 60% of the cases reasonably quickly but doesn’t solve the rest

C solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time or median run time
don’t make much sense.

43

RUNTIME DISTRIBUTION
Plots the runtime and the proportion of the runs that are solved within that runtime.

44

DIT410/TIN174, Artificial Intelligence Chapter 6: Constraint satisfaction problems

CHAPTER 6: CONSTRAINT SATISFACTION
PROBLEMS

DIT410/TIN174, Artificial Intelligence

Peter Ljunglöf

31 March, 2017

1

TABLE OF CONTENTS
CSP: Constraint satisfaction problems (R&N 6.1)

Formulating a CSP
Constraint graph

CSP as a search problem (R&N 6.3–6.3.2)
Backtracking search
Heuristics: Improving backtracking efficiency

Constraint progagation (R&N 6.2–6.2.2)
Arc consistency
Maintaining arc-consistency (MAC)

2

CSP: CONSTRAINT SATISFACTION
PROBLEMS (R&N 6.1)

FORMULATING A CSP

CONSTRAINT GRAPH

3

CONSTRAINT SATISFACTION PROBLEMS (CSP)

Standard search problem:

the state is a “black box”,
any data structure that supports: goal test, cost evaluation, successor

CSP is a more specific search problem:

the state is defined by variables , taking values from the domain

the goal test is a set of constraints specifying allowable combinations
of values for subsets of variables

Since CSP is more specific, it allows useful algorithms with more power than
standard search algorithms

Xi Di

4

STATES AND VARIABLES
Just a few variables can describe many states:

binary variables can describe states

10 binary variables can describe = 1,024

20 binary variables can describe = 1,048,576

30 binary variables can describe = 1,073,741,824

100 binary variables can describe = 1,267,650,600,228,229,
 401,496,703,205,376

n 2
n

210

220

230

2100

5

HARD AND SOFT CONSTRAINTS

Given a set of variables, assign a value to each variable that either

satisfies some set of constraints:
satisfiability problems — “hard constraints”

or minimizes some cost function,
where each assignment of values to variables has some cost:

optimization problems — “so� constraints” — “preferences”

Many problems are a mix of hard constraints and preferences
(constraint optimization problems)

6

RELATIONSHIP TO SEARCH

CSP differences to general search problems:

The path to a goal isn’t important, only the solution is.

There are no predefined starting nodes.

O�en these problems are huge, with thousands of variables,
so systematically searching the space is infeasible.

For optimization problems, there are no well-defined goal nodes.

7

FORMULATING A CSP

A CSP is characterized by

A set of variables .

Each variable has an associated domain of possible values.

There are hard constraints on various subsets of the variables
which specify legal combinations of values for these variables.

A solution to the CSP is an assignment of a value to each variable
that satisfies all the constraints.

, , … ,X1 X2 Xn

Xi Di

C ,…,Xi Xj

8

EXAMPLE: SCHEDULING ACTIVITIES

Variables: representing starting times of various activities.
(e.g., courses and their study periods)

Domains:

Constraints:

A, B, C, D, E

= = = = = {1, 2, 3, 4}DA DB DC DD DE

(B ≠ 3), (C ≠ 2), (A ≠ B), (B ≠ C), (C < D), (A = D),

(E < A), (E < B), (E < C), (E < D), (B ≠ D)

9

EXAMPLE: CROSSWORD PUZZLE

Words: ant, big, bus,
car, has, book, buys,
hold, lane, year, beast,
ginger, search, symbol,
syntax, …

10

DUAL REPRESENTATIONS
Many problems can be represented in different ways as a CSP, e.g., the crossword puzzle:

One representation:
nodes represent word positions:
1-down…6-across
domains are the words
constraints specify that the letters
on the intersections must be the same

Dual representation:
nodes represent the individual squares
domains are the letters
constraints specify that the words must fit

11

EXAMPLE: MAP COLOURING

Variables:

Domains:
Constraints: adjacent regions must have different colors, i.e.,

WA, NT, Q, NSW, V, SA, T

= {red, green, blue}Di

WA ≠ NT, WA ≠ SA, NT ≠ SA, NT ≠ Q, …

12

EXAMPLE: MAP COLOURING

Solutions are assignments satisfying all constraints, e.g.,
 {WA = red, NT = green, Q = red, NSW = green,

V = red, SA = blue, T = green}

13

CONSTRAINT GRAPH

Binary CSP: each constraint relates at most two variables
(note: this does not say anything about the domains)

Constraint graph: every variable is a node, every binary constraint is an arc

CSP algorithms can use the graph structure to speed up search,
e.g., Tasmania is an independent subproblem.

14

EXAMPLE: CRYPTARITHMETIC PUZZLE

Variables:

Domains:

Constraints: , , etc.
Note: This is not a binary CSP!

The graph is a constraint hypergraph

F, T, U, W, R, O, , ,X1 X2 X3

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Alldiff(F, T, U, W, R, O) O + O = R + 10 ⋅ X1

15

EXAMPLE: SUDOKU

Variables:

Domains:

Constraints: , …, , …, , …,
, …, , …,

… , , … , , … ,A1 A9 B1 E5 I9

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Alldiff(, … ,)A1 A9 Alldiff(, … ,)A5 I5 Alldiff(, … ,)D1 F3

= 9B1 = 8F6 = 3I7

16

EXAMPLE: N-QUEENS

Variables:

Domains:

Constraints: ,
 ()

, , … ,Q1 Q2 Qn

{1, 2, 3, … , n}

Alldiff(, , … ,)Q1 Q2 Qn

− ≠ |i − j|Qi Qj 1 ≤ i < j ≤ n

17

CSP VARIETIES
Discrete variables, finite domains:

 variables, domain size complete assignments
what we discuss in this course

Discrete variables, infinite domains (integers, strings, etc.)

e.g., job scheduling — variables are start/end times for each job
we need a constraint language for formulating the constraints
(e.g.,)
linear constraints are solvable — nonlinear are undecidable

Continuous variables:

e.g., scheduling for Hubble Telescope observations and manouvers
linear constraints (linear programming) — solvable in polynomial time!

n d ⇒ O()dn

+ ≤T1 d1 T2

18

DIFFERENT KINDS OF CONSTRAINTS
Unary constraints involve a single variable:

e.g.,

Binary constraints involve pairs of variables:

e.g.,

Global constraints (or higher-order) involve 3 or more variables:

e.g.,
all global constraints can be reduced to a number of binary constraints
(but this might lead to an explosion of the number of constraints)

Preferences (or so� constraints):

“constraint optimization problems”
o�en representable by a cost for each variable assignment
not discussed in this course

SA ≠ green

SA ≠ WA

Alldiff(WA, NT, SA)

19

CSP AS A SEARCH PROBLEM
(R&N 6.3–6.3.2)

BACKTRACKING SEARCH

HEURISTICS: IMPROVING BACKTRACKING EFFICIENCY

20

GENERATE-AND-TEST ALGORITHM

Generate the assignment space
Test each assignment with the constraints.

Example:

=

 =

 =

How many assignments need to be tested for variables,
each with domain size ?

D = × × ⋯ ×DV1
DV2

DVn

D × × × ×DA DB DC DD DE

{1, 2, 3, 4} × ⋯ × {1, 2, 3, 4}

{(1, 1, 1, 1, 1), (1, 1, 1, 1, 2), … , (4, 4, 4, 4, 4)}

n

d = | |Di

21

CSP AS A SEARCH PROBLEM

Let’s start with the straightforward, dumb approach.

States are defined by the values assigned so far:
Initial state: the empty assignment, { }
Successor function: assign a value to an unassigned variable
that does not conflict with current assignment

 fail if there are no legal assignments
Goal test: the current assignment is complete

Every solution appears at depth (assuming variables)
 we can use depth-first-search, no risk for infinite loops

At search depth , the branching factor is
(where is the domain size and is the number of unassigned
variables)

 hence there are leaves

⟹

n n

⟹

k b = (n − k)d

d = | |Di n − k

⟹ n!dn

22

BACKTRACKING SEARCH

Variable assignments are commutative:

 is the same as

It’s unnecessary work to assign followed by in one branch,
and followed by in another branch.

Instead, at each depth level, we can decide on one single variable to assign:

this gives branching factor , so there are leaves (instead of)

Depth-first search with single-variable assignments is called backtracking search:

backtracking search is the basic uninformed CSP algorithm
it can solve -queens for

Why not use breadth-first search?

{WA = red, NT = green} {NT = green, WA = red}

WA NT

NT WA

b = d dn n!dn

n n ≈ 25

23

SIMPLE BACKTRACKING EXAMPLE

Variables:

Domains:

Constraints:

A, B, C

= = = {1, 2, 3, 4}DA DB DC

(A < B), (B < C)

24

EXAMPLE: AUSTRALIA MAP COLOURS

Assign variable: Q

25

ALGORITHM FOR BACKTRACKING SEARCH

function BacktrackingSearch(csp):
return Backtrack(csp, { })

function Backtrack(csp, assignment):

if assignment is complete then return assignment
var := SelectUnassignedVariable(csp, assignment)
for each value in OrderDomainValues(csp, var, assignment):

if value is consistent with assignment:
inferences := Inference(csp, var, value)
if inferences ≠ failure:

result := Backtrack(csp, assignment {var=value} inferences)
if result ≠ failure then return result

return failure

∪ ∪

26

HEURISTICS: IMPROVING BACKTRACKING EFFICIENCY

The general-purpose algorithm gives rise to several questions:

Which variable should be assigned next?
SelectUnassignedVariable(csp, assignment)

In what order should its values be tried?
OrderDomainValues(csp, var, assignment)

What inferences should be performed at each step?
Inference(csp, var, value)

Can the search avoid repeating failures?
Conflict-directed backjumping, constraint learning, no-good sets
(R&N 6.3.3, not covered in this course)

27

SELECTING UNASSIGNED VARIABLES

Heuristics for selecting the next unassigned variable:

Minimum remaining values (MRV):
 choose the variable with the fewest legal values

Degree heuristic (if there are several MRV variables):
 choose the variable with most constraints on remaining variables

⟹

⟹

28

ORDERING DOMAIN VALUES

Heuristics for ordering the values of a selected variable:

Least constraining value:
 prefer the value that rules out the fewest choices for the neighboring

variables in the constraint graph
⟹

29

INFERENCE: FORWARD CHECKING
Forward checking is a simple form of inference:

Keep track of remaining legal values for unassigned variables
— terminate when any variable has no legal values le�
When a new variable is assigned, recalculate the legal values for its neighbors

30

INFERENCE: CONSTRAINT PROPAGATION

Forward checking propagates information from assigned to
unassigned variables, but doesn’t detect all failures early:

NT and SA cannot both be blue!

Forward checking enforces local constraints
Constraint propagation enforces local constraints,
repeatedly until reaching a fixed point

31

CONSTRAINT PROGAGATION
(R&N 6.2–6.2.2)
ARC CONSISTENCY

MAINTAINING ARC CONSISTENCY

32

CONSTRAINT PROPAGATION: ARC CONSISTENCY

The simplest form of propagation is to make each arc consistent:

 is arc consistent iff:
for every value of , there is some allowed value in

If loses a value, neighbors of need to be rechecked
Arc consistency detects failure earlier than forward checking

X → Y

x X y Y

X X

33

CONSISTENCY

Different variants of constistency:

A variable is node-consistent if all values in its domain satisfy
its own unary constraints,

a variable is arc-consistent if every value in its domain satisfies
the variable’s binary constraints,

Generalised arc-consistency is the same, but for -ary constraints,

Path consistency is arc-consistency, but for 3 variables at the same time.

-consistency is arc-consistency, but for variables,

…and there are consistency checks for several global constraints,
such as and .

A network is -consistent if every variable is -consistent with every other variable.

n

k k

Alldiff Atmost

X X

34

SCHEDULING EXAMPLE (AGAIN)

Variables: representing starting times of various activities.

Domains:

Constraints:

Is this example node consistent?

 is not node consistent,
since violates the constraint

 reduce the domain

 is not node consistent,
since violates the constraint

 reduce the domain

A, B, C, D, E

= = = = = {1, 2, 3, 4}DA DB DC DD DE

(B ≠ 3), (C ≠ 2), (A ≠ B), (B ≠ C), (C < D), (A = D),

(E < A), (E < B), (E < C), (E < D), (B ≠ D)

= {1, 2, 3, 4}DB

B = 3 B ≠ 3

⟹ = {1, 2, 4}DB

= {1, 2, 3, 4}DC

C = 2 C ≠ 2

⟹ = {1, 3, 4}DC

35

SCHEDULING EXAMPLE AS A CONSTRAINT GRAPH
If we reduce the domains for and , then the constraint graph is node consistent.B C

36

ARC CONSISTENCY
A variable is binary arc-consistent with respect to another variables if:

For each value , there is some
such that the binary constraint is satisfied.

A variable is generalised arc-consistent with respect to variables if:

For each value , there is some assignment such
that is satisfied.

What if is not arc consistent to ?

All values for which there is no corresponding
can be deleted from to make arc consistent.

Note! The arcs in a constraint graph are directed:

 and are considered as two different arcs,
i.e., can be arc consistent to , but not arc consistent to .

X (Y)

x ∈ DX y ∈ DY

(x, y)CXY

X (Y, Z, …)

x ∈ DX y, z,⋯ ∈ , , …DY DZ

(x, y, z, …)CXYZ…

X Y

x ∈ DX y ∈ DY

DX X

(X, Y) (Y, X)

X Y Y X

37

ARC CONSISTENCY ALGORITHM

Keep a set of arcs to be considered: pick one arc at the time and
make it consistent (i.e., make arc consistent to).

Start with the set of all arcs .

When an arc has been made arc consistent, does it ever need to be checked again?

An arc needs to be revisited if the domain of is revised.

Three possible outcomes when all arcs are made arc consistent:
(Is there a solution?)

One domain is empty no solution
Each domain has a single value unique solution
Some domains have more than one value maybe a solution, maybe not

(X, Y)

X Y

{(X, Y), (Y, X), (X, Z), (Z, X), …}

(X, Y) Y

⟹

⟹

⟹

38

QUIZ: ARC CONSISTENCY

The variables and constraints are in the constraint graph:

Assume the initial domains are

How will the domains look like a�er making the graph arc consistent?

= = = {1, 2, 3, 4}DA DB DC

39

THE ARC CONSISTENCY ALGORITHM AC-3

function AC-3(inout csp):
initialise queue to all arcs in csp
while queue is not empty:

(X, Y) := RemoveOne(queue)
if Revise(csp, X, Y):

if then return false
for each Z in X.neighbors–{Y}:

add (Z, X) to queue
return true

function Revise(inout csp, X, Y):

revised := false
for each x in :

if there is no value y in satisfying the csp constraint :
delete x from
revised := true

return revised

Note: This algorithm destructively updates the domains of the CSP!
You might need to copy the CSP before calling AC-3.

= ∅DX

DX

DY (x, y)CXY

DX

40

MAINTAINING ARC-CONSISTENCY (MAC)

What if some domains have more than one element a�er AC?

We can always resort to backtracking search:

Select a variable and a value using some heuristics
(e.g., minimum-remaining-values, degree-heuristic, least-constraining-value)
Make the graph arc-consistent again
Backtrack and try new values/variables, if AC fails
Select a new variable/value, perform arc-consistency, etc.

Do we need to restart AC from scratch?

no, only some arcs risk becoming inconsistent a�er a new assignment
restart AC with the queue ,
i.e., only the arcs where are the neighbors of
this algorithm is called Maintaining Arc Consistency (MAC)

{(, X)|X → }Yi Yi

(, X)Yi Yi X

41

DOMAIN SPLITTING (NOT IN R&N)

What if some domains are very big?

Instead of assigning every possible value to a variable, we can split its domain

Split one of the domains, then recursively solve each half, i.e.:

perform AC on the resulting graph, then split a domain,
perform AC, split a domain, perform AC, split, etc.

It is o�en good to split a domain in half, i.e.:

if , split into and = {1, … , 1000}DX {1, … 500} {501, … , 1000}

42

DIT410/TIN174, Artificial Intelligence Natural Language Processing

NATURAL LANGUAGE PROCESSING
DIT410/TIN174, Artificial Intelligence

John J. Camilleri

4 April, 2017

1

� STUDENT PARTICIPATION LINK �

or go to and click Student login
Room name: HORSEY

Source: http://www.denizyuret.com/2010/12/research-focus.html

https://b.socrative.com/student/
socrative.com

2

https://b.socrative.com/student/
http://socrative.com/

NATURAL LANGUAGE
FORMAL LANGUAGE

3

NATURAL LANGUAGE UNDERSTANDING

http://i.huffpost.com/gen/1403845/images/o-SPIKE-JONZE-HER-facebook.jpg

4

NATURAL LANGUAGE PROCESSING

5

INFORMATION EXTRACTION
Named entity recognition

http://www.europeana-newspapers.eu/named-entity-recognition-for-digitised-
newspapers/

6

CLASSIFICATION
Sentiment analysis

https://www.csc.ncsu.edu/faculty/healey/tweet_viz/

7

INFORMATION RETRIEVAL
Search

8

MACHINE TRANSLATION

9

APPROACHES
RULE-BASED

STATISTICAL

DEEP LEARNING

10

PHRASE-STRUCTURE GRAMMARS
“the man saw a mountain”

↓

11

CONTEXT-FREE GRAMMAR (CFG)
terminals, non-terminals, rules

S → NP VP
NP → Det N
VP → V NP
N → man | mountain
V → saw
Det → a | the

12

� SOCRATIVE QUESTION �

http://www.triblocal.com/highland-park-highwood/files/2012/03/stock-photo-
17181584-mountain-man.jpg

13

AMBIGUITY
extending the grammar with prepositions

14

PARSING
input string → parse tree(s)

15

CYK ALGORITHM

16

PROBABILISTIC PARSING

17

OVERGENERATION
“All grammars leak”

18

SOLUTIONS TO OVERGENERATION
In CFG
Other formalisms

19

GENERATIVE CAPACITY
Chomsky hierarchy

20

� SOCRATIVE QUESTION �

21

LEVELS OF AMBIGUITY
Lexical

Syntactic
Semantic

22

MODELS FOR DISAMBIGUATION
Acoustic model

Language model
Mental model
World model

23

� SOCRATIVE QUESTION �

http://wmjasco.blogspot.se/2008/11/colorless-green-ideas-do-not-sleep.html

24

THAT’S ALL FOR TODAY
FRIDAY:

Semantics, Interpretation, NLP in Shrdlite

���

25

DIT410/TIN174, Artificial Intelligence Natural Language Interpretation

NATURAL LANGUAGE INTERPRETATION
DIT410/TIN174, Artificial Intelligence

John J. Camilleri

7 April, 2017

1

https://img.memesuper.com/7ad355dacca363617cdfcff7defc07ed_-of-morpheus-offering-the-morpheus-pill-meme_520-412.jpeg

2

https://img.memesuper.com/7ad355dacca363617cdfcff7defc07ed_-of-morpheus-offering-the-morpheus-pill-meme_520-412.jpeg

LAST TIME…
“Mary saw the man with a telescope”

3

“Colourless green ideas sleep furiously”

✋ Is this sentence valid? Yes or No

http://wmjasco.blogspot.se/2008/11/colorless-green-ideas-do-not-sleep.html

4

http://wmjasco.blogspot.se/2008/11/colorless-green-ideas-do-not-sleep.html

WHY SYNTAX?

5

SEMANTIC REPRESENTATION
Introducing logical terms

Mary = Mary
the man = Man
Mary saw the man = Saw(Mary, Man)

6

SEMANTIC INTERPRETATION (1)

↓

With(Saw(Mary, Man), Telescope)

7

SEMANTIC INTERPRETATION (2)

↓

Saw(Mary, With(Man, Telescope))

8

COMPOSITIONAL SEMANTICS
Mary = Mary
the man = Man
Mary saw the man = Saw(Mary, Man)
saw = λy λx · Saw(x, y)
saw the man = λx · Saw(x, Man)

9

INTERPRETATION
syntactic representation → semantic representation

parse tree → logical term

10

Utterance: “move the white ball into the red box”

✋ Is this ambiguous? Yes or No

11

Goal: inside(white_ball, red_box)

12

Utterance: “move the ball into the red box”

✋ Is this ambiguous? Yes or No

13

SHRDLITE PIPELINE
1. Parsing: text input → parse trees
2. Interpretation: parse tree + world → goals
3. Ambiguity resolution: many goals → one goal
4. Planning: goal → robot movements

14

PARSING
text input → parse trees

```function parse(input:string) : string | ShrdliteResult[]

{: .code} 

```interface ShrdliteResult { 
 input : string
 parse : Command
 interpretation? : DNFFormula
 plan? : string[]
}

15

GRAMMAR (SIMPLIFIED)
From file Grammar.ne

```command –> “put” entity location entity –> quantifier object object –> size:? color:?
form object –> object location location –> relation entity

{: .code} 

Notes: 

- Recursion 
- Draw a tree top-down on the board 

--- 

_“put the white ball in a box on the floor”_   
![](img/nlp/shrdlite-small.png){:.noborder}   
✋ Is this ambiguous? 
<span style="background:lime;color:white;padding:3px 6px;">Yes</span> or 
<span style="background:magenta;color:white;padding:3px 6px;">No</span>   

--- 

_“put the white ball in a box on the floor”_   
![](img/nlp/shrdlite-small.png){:.noborder}   
✋ Is the ambiguity 
<span style="background:lime;color:white;padding:3px 6px;">syntactic</span> or 
<span style="background:magenta;color:white;padding:3px 6px;">semantic</span>? 

Notes: 

16



LOGICAL INTERPRETATIONS (“GOALS”)
```type DNFFormula = Conjunction[] type Conjunction = Literal[]

{: .code}

DNF = Disjunctive Normal Form

Example: `(x ∧ y) ∨ (z)`

```DNFFormula([Conjunction([x, y]), Conjunction(z)]) 

17



LITERALS
```interface Literal { relation : string; args : string[]; polarity : boolean; }

{: .code}

Example: `ontop(a,b)`

```{ relation:"ontop", args:["a","b"], polarity:true } 

18



SPATIAL RELATIONS
x is on top of y if it is directly on top
x is above y if it is somewhere above
…

19



AMBIGUITY
DNF inherently captures ambiguity
But impossible interperetations should be removed

20



“put the white ball that is in a box on the floor” 

There is no spoon white ball in a box.

21



“put the white ball in a box on the floor” 

22



inside(WhiteBall, YellowBox) 
Yellow box is already on floor: 3 moves 

23



inside(WhiteBall, RedBox) ∧ on(RedBox, floor) 
Red box can be placed on floor first: 2 moves 

24



FINAL INTERPRETATION
inside(WhiteBall, YellowBox) ∨ (inside(WhiteBall, RedBox) ∧ on(RedBox, floor))

25



PHYSICAL LAWS
Balls must be in boxes or on the floor, otherwise they roll away.
Small objects cannot support large objects.
…

26



INTERPRETER TEST CASES
Each test case contains a list of interpretations
Each interpretation is already a list (a disunction of conjunctions)

  world: "small", 
  utterance: "take a blue object", 
  interpretations: [["holding(BlueTable)","holding(BlueBox)"]] 
} 

  world: "small", 
  utterance: "put a black ball in a box on the floor", 
  interpretations: [["inside(BlackBall,YellowBox)"], 
                    ["ontop(BlackBall,floor)"]] 
} 

27



CONJUNCTION
  world: "small", 
  utterance: "put all balls on the floor", 
  interpretations: [["ontop(WhiteBall,floor) & ontop(BlackBall,floor)"]] 
} 

28



NO VALID INTERPRETATIONS

Breaks the laws of nature!

  world: "small", 
  utterance: "put a ball on a table", 
  interpretations: [] 
} 

29



SOME INTERPRETATIONS ARE MISSING
  world: "small", 
  utterance: "put a ball in a box on the floor", 
  interpretations: [["COME UP WITH YOUR OWN INTERPRETATION"]] 
} 

30



TIPS FOR INTERPRETER IN SHRDLITE
Sub-functions based on grammar types
Use instanceof when traversing parse tree (Command)
Use recursion to handle nesting 
“put a box in a box on a table on the floor”

31



AMBIGUITY RESOLUTION
Handling multiple interpretations

Fail
Pick “first”
Use some rules of thumb 
e.g. prefer box already on floor
Ask the user for clarification (extension)

32



PLANNING
goal → robot movements

Movements: le�, right, pick, drop
Use graph search
Given a disjunction of goals, should find the easiest to satisfy

33



AUDIENCE PARTICIPATION META-QUESTION
✋ Do you prefer Socrative  or post-it notes ?

Thank you for returning your post-it notes! �

34



DIT410/TIN174, Artificial Intelligence Chapters 4–5: Non-classical and adversarial search

CHAPTERS 4–5: NON-CLASSICAL AND
ADVERSARIAL SEARCH

DIT410/TIN174, Artificial Intelligence

Peter Ljunglöf

21 April, 2017

1



TABLE OF CONTENTS
Repetition

Uninformed search (R&N 3.4)
Heuristic search (R&N 3.5–3.6)
Local search (R&N 4.1)

Non-classical search
Nondeterministic search (R&N 4.3)
Partial observations (R&N 4.4)

Adversarial search
Types of games (R&N 5.1)
Minimax search (R&N 5.2–5.3)
Imperfect decisions (R&N 5.4–5.4.2)
Stochastic games (R&N 5.5)

2



REPETITION
UNINFORMED SEARCH (R&N 3.4)

Search problems, graphs, states, arcs, goal test, generic search algorithm,
tree search, graph search, depth-first search, breadth-first search,
uniform cost search, iterative deepending, bidirectional search, …

 

HEURISTIC SEARCH (R&N 3.5–3.6)
Greedy best-first search, A* search, heuristics, admissibility, consistency,
dominating heuristics, …

 

LOCAL SEARCH (R&N 4.1)
Hill climbing / gradient descent, random moves, random restarts, beam search,
simulated annealing, …

3



NON-CLASSICAL SEARCH
NONDETERMINISTIC SEARCH (R&N 4.3)

PARTIAL OBSERVATIONS (R&N 4.4)

4



NONDETERMINISTIC SEARCH (R&N 4.3)
Contingency plan (strategy)
And-or search trees
And-or graph search algorithm

5



THE VACUUM CLEANER WORLD, AGAIN

The eight possible states of the vacuum world; states 7 and 8 are goal states.

There are three actions: Le�, Right, Suck

6



AN ERRATIC VACUUM CLEANER
Assume that the Suck action works as follows:

if the square is dirty, it is cleaned but sometimes also the adjacent square is
if the square is clean, the vacuum cleaner sometimes deposists dirt

 
Now we need a more general result function:

instead of returning a single state, it returns a set of possible outcome states
e.g.,  and  

 
We also need to generalise the notion of a solution:

instead of a single sequence (path) from the start to the goal, 
we need a strategy (or a contingency plan)
i.e., we need if-then-else constructs
this is a possible solution from state 1:

[Suck, if State=5 then [Right, Suck] else []]

�������(����, 1) = {5, 7} �������(����, 5) = {1, 5}

7



HOW TO FIND CONTINGENCY PLANS
We need a new kind of nodes in the search tree:

and nodes: 
these are used whenever an action is nondeterministic
normal nodes are called or nodes: 
they are used when we have several possible actions in a state

 
A solution for an and-or search problem is a subtree that:

has a goal node at every leaf
specifies exactly one action at each of its or node
includes every branch at each of its and node

8



A SOLUTION TO THE ERRATIC VACUUM CLEANER

The solution subtree is shown in bold, and corresponds to the plan: 
[Suck, if State=5 then [Right, Suck] else []]

9



AN ALGORITHM FOR FINDING A CONTINGENCY PLAN
This algorithm does a depth-first search in the and-or tree, 

so it is not guaranteed to find the best or shortest plan:

function AndOrGraphSearch(problem):
return OrSearch(problem.InitialState, problem, [])

 
function OrSearch(state, problem, path):

if problem.GoalTest(state) then return []
if state is on path then return failure
for each action in problem.Actions(state):

plan := AndSearch(problem.Results(state, action), problem, [state] ++ path)
if plan ≠ failure then return [action] ++ plan

return failure
 
function AndSearch(states, problem, path):

for each  in states:
 := OrSearch( , problem, path)

if  = failure then return failure
return [if  then  else if  then  else … if  then ]

si

plani si

plani

s1 plan1 s2 plan2 sn plann

10



WHILE LOOPS IN CONTINGENCY PLANS

If the search graph contains cycles, if-then-else is not enough in a contingency plan:
we need while loops instead

 
In the slippery vacuum world above, the cleaner don’t always move when told:

the solution is a sub-graph (not a subtree), shown in bold above
this solution translates to [Suck, while State=5 do Right, Suck]

11



PARTIAL OBSERVATIONS (R&N 4.4)
Belief states: goal test, transitions, …
Sensor-less (conformant) problems
Partially observable problems

12



OBSERVABILITY VS DETERMINISM
A problem is nondeterministic if there are several possible outcomes of an action

deterministic — nondeterministic (chance)
It is partially observable if the agent cannot tell exactly which state it is in

fully observable (perfect info.) — partially observable (imperfect info.)
A problem can be either nondeterministic, or partially observable, or both:

13



BELIEF STATES
Instead of searching in a graph of states, we use belief states

A belief state is a set of states
In a sensor-less (or conformant) problem, the agent has no information at all

The initial belief state is the set of all problem states
e.g., for the vacuum world the initial state is {1,2,3,4,5,6,7,8}

The goal test has to check that all members in the belief state is a goal
e.g., for the vacuum world, the following are goal states: {7}, {8}, and {7,8}

The result of performing an action is the union of all possible results
i.e.,  for each 
if the problem is also nondeterministic:

 for each 

�������(b, a) = {������(s, a) s ∈ b}

�������(b, a) = ⋃{�������(s, a) s ∈ b}

14



PREDICTING BELIEF STATES IN THE VACUUM WORLD

(a) Predicting the next belief state for the sensorless vacuum world 
with a deterministic action, Right.

(b) Prediction for the same belief state and action in the nondeterministic 
slippery version of the sensorless vacuum world.

15



THE DETERMINISTIC SENSORLESS VACUUM WORLD

16



PARTIAL OBSERVATIONS: STATE TRANSITIONS
With partial observations, we can think of belief state transitions in three stages:

Prediction, the same as for sensorless problems:
 for each 

Observation prediction, determines the percepts that can be observed:
 for each 

Update, filters the predicted states according to the percepts:
 for each  such that 

 
Belief state transitions:

 for each  
where   

= �������(b, a) = {������(s, a)b′ s ∈ b}

����������������( ) = {�������(s)b′ s ∈ }b′

������( , o) = {sb′ s ∈ b′ o = �������(s)}

�������(b, a) = {������( , o)b′ o ∈ ����������������( )}b′

= �������(b, a)b′

17



TRANSITIONS IN PARTIALLY OBSERVABLE VACUUM WORLDS
 
The percepts return the
current position and the
dirtyness of that square.
 
(a) The deterministic world: 
Right always succeeds.
 
(b) The slippery world: 
Right sometimes fails.

18



EXAMPLE: ROBOT LOCALISATION

The percepts return if there is a wall in each of the directions.

(a) Possible initial positions of the robot, a�er one observation.

(b) A�er moving right and a new observation, there is only one possible position le�.

19



ADVERSARIAL SEARCH
TYPES OF GAMES (R&N 5.1)

MINIMAX SEARCH (R&N 5.2–5.3)

IMPERFECT DECISIONS (R&N 5.4–5.4.2)

STOCHASTIC GAMES (R&N 5.5)

20



TYPES OF GAMES (R&N 5.1)
cooperative, competetive, zero-sum games
game trees, ply/plies, utility functions

21



MULTIPLE AGENTS

Let’s consider problems with multiple agents, where:

the agents select actions autonomously

each agent has its own information state
they can have different information (even conflicting)

the outcome depends on the actions of all agents

each agent has its own utility function (that depends on the total outcome)

22



TYPES OF AGENTS

There are two extremes of multiagent systems:

Cooperative: The agents share the same utility function
Example: Automatic trucks in a warehouse

Competetive: When one agent wins all other agents lose
A common special case is when  for any outcome . 
This is called a zero-sum game.
Example: Most board games

Many multiagent systems are between these two extremes.

Example: Long-distance bike races are usually both cooperative 
(bikers usually form clusters where they take turns in leading a group), 
and competetive (only one of them can win in the end).

(o) = 0∑
a

ua o

23



GAMES AS SEARCH PROBLEMS

The main difference to chapters 3–4: 
now we have more than one agent that have different goals.

All possible game sequences are represented in a game tree.

The nodes are states of the game, e.g. board positions in chess.

Initial state (root) and terminal nodes (leaves).

States are connected if there is a legal move/ply. 
(a ply is a move by one player, i.e., one layer in the game tree)

Utility function (payoff function). Terminal nodes have utility values 
 (player 1 wins),  (player 2 wins) and  (draw).+x −x 0

24



TYPES OF GAMES (AGAIN)

25



PERFECT INFORMATION GAMES: ZERO-SUM GAMES

Perfect information games are solvable in a manner similar to 
fully observable single-agent systems, e.g., using forward search.

If two agents are competing so that a positive reward for one is a negative reward 
for the other agent, we have a two-agent zero-sum game.

The value of a game zero-sum game can be characterized by a single number that
one agent is trying to maximize and the other agent is trying to minimize.

This leads to a minimax strategy:

A node is either a MAX node (if it is controlled by the maximising agent),
or is a MIN node (if it is controlled by the minimising agent).

26



MINIMAX SEARCH (R&N 5.2–5.3)
Minimax algorithm
α-β pruning

27



MINIMAX SEARCH FOR ZERO-SUM GAMES
Given two players called MAX and MIN:

MAX wants to maximize the utility value,
MIN wants to minimize the same value.

 MAX should choose the alternative that maximizes assuming that MIN minimizes.
 
Minimax gives perfect play for deterministic, perfect-information games:

 
function Minimax(state):

if TerminalTest(state) then return Utility(state)
A := Actions(state)
if state is a MAX node then return  Minimax(Result(state, a))
if state is a MIN node then return  Minimax(Result(state, a))

⇒

maxa∈A

mina∈A

28



MINIMAX SEARCH: TIC-TAC-TOE

29



MINIMAX EXAMPLE
The Minimax algorithm gives perfect play for deterministic, perfect-information games.

30



CAN MINIMAX BE WRONG?
Minimax gives perfect play, but is that always the best strategy?

Perfect play assumes that the opponent is also a perfect player!

31



3-PLAYER MINIMAX
Minimax can also be used on multiplayer games

32



 PRUNING

Minimax(root) =

  =

  =    where 

  =
I.e., we don’t need to know the values of  and !

α−β

max(min(3, 12, 8), min(2, x, y), min(14, 5, 2))

max(3, min(2, x, y), 2)

max(3, z, 2) z ≤ 2

3

x y

33



 PRUNING, GENERAL IDEA
 
The general idea of α-β pruning is this:
  • if  is better than  for Player,
    we don’t want to pursue 
  • so, once we know enough about  we can
prune it
  • sometimes it’s enough to examine just one
    of ’s descendants
 
 
 
α-β pruning keeps track of the possible range

of values for every node it visits; 
the parent range is updated when the child has been visited.

α−β

m n

n

n

n

34



MINIMAX EXAMPLE, WITH  PRUNINGα−β

35



THE  ALGORITHM

function AlphaBetaSearch(state):
v := MaxValue(state, , ))
return the action in Actions(state) that has value v

 
function MaxValue(state, α, β):

if TerminalTest(state) then return Utility(state)
v := 
for each action in Actions(state):

v := max(v, MinValue(Result(state, action), α, β))
if v ≥ β then return v
α := max(α, v)

return v
 
function MinValue(state, α, β):

same as MaxValue but reverse the roles of α/β and min/max and 

α−β

−∞ +∞

−∞

−∞/+∞

36



HOW EFFICIENT IS  PRUNING?

The amount of pruning provided by the α-β algorithm depends on the ordering of
the children of each node.

It works best if a highest-valued child of a MAX node is selected first and 
if a lowest-valued child of a MIN node is returned first.

In real games, much of the effort is made to optimise the search order.

With a “perfect ordering”, the time complexity becomes 

this doubles the solvable search depth
however,  (for chess) or  (for go) is still impossible…

α−β

O( )bm/2

3580/2 250160/2

37



MINIMAX AND REAL GAMES

Most real games are too big to carry out minimax search, even with α-β pruning.

For these games, instead of stopping at leaf nodes, 
we have to use a cutoff test to decide when to stop.

The value returned at the node where the algorithm stops 
is an estimate of the value for this node.

The function used to estimate the value is an evaluation function.

Much work goes into finding good evaluation functions.

There is a trade-off between the amount of computation required 
to compute the evaluation function and the size of the search space 
that can be explored in any given time.

38



IMPERFECT DECISIONS (R&N 5.4–5.4.2)

STOCHASTIC GAMES (R&N 5.5)
Note: these two sections were presented Tuesday 25th April!

39



DIT410/TIN174, Artificial Intelligence Chapter 6: Search part IV, and Constraint satisfaction problems, part II

CHAPTER 6: SEARCH PART IV, AND
CONSTRAINT SATISFACTION PROBLEMS,

PART II
DIT410/TIN174, Artificial Intelligence

Peter Ljunglöf

25 April, 2017

1



TABLE OF CONTENTS
Repetition of search

Classical search (R&N 3.1–3.6)
Non-classical search (R&N 4.1, 4.3–4.4)
Adversarial search (R&N 5.1–5.3)

More games
Imperfect decisions (R&N 5.4–5.4.2)
Stochastic games (R&N 5.5)

Repetition of CSP
Constraint satisfaction problems (R&N 6.1)
CSP as a search problem (R&N 6.3–6.3.2)
Constraint progagation (R&N 6.2–6.2.2)

More about CSP
Local search for CSPs (R&N 6.4)
Problem structure (R&N 6.5)

2



REPETITION OF SEARCH
CLASSICAL SEARCH (R&N 3.1–3.6)

Generic search algorithm, tree search, graph search, depth-first search, 
breadth-first search, uniform cost search, iterative deepending, 
bidirectional search, greedy best-first search, A* search, 
heuristics, admissibility, consistency, dominating heuristics, …

 

NON-CLASSICAL SEARCH (R&N 4.1, 4.3–4.4)
Hill climbing, random moves, random restarts, beam search, 
nondeterministic actions, contingency plan, and-or search trees, 
partial observations, belief states, sensor-less problems, …

 

ADVERSARIAL SEARCH (R&N 5.1–5.3)
Cooperative, competetive, zero-sum games, game trees, 
minimax, α-β pruning, …

3



MORE GAMES
IMPERFECT DECISIONS (R&N 5.4–5.4.2)

STOCHASTIC GAMES (R&N 5.5)

4



IMPERFECT DECISIONS (R&N 5.4–5.4.2)
H-minimax algorithm
evaluation function, cutoff test
features, weighted linear function
quiescence search, horizon effect

5



REPETITION: MINIMAX SEARCH FOR ZERO-SUM GAMES
Given two players called MAX and MIN:

MAX wants to maximize the utility value,
MIN wants to minimize the same value.

 MAX should choose the alternative that maximizes assuming that MIN minimizes.
 

function Minimax(state):
if TerminalTest(state) then return Utility(state)
A := Actions(state)
if state is a MAX node then return  Minimax(Result(state, a))
if state is a MIN node then return  Minimax(Result(state, a))

⇒

maxa∈A

mina∈A

6



H-MINIMAX ALGORITHM
The Heuristic Minimax algorithm is similar to normal Minimax

it replaces TerminalTest and Utility with CutoffTest and Eval
 

function H-Minimax(state, depth):
if CutoffTest(state, depth) then return Eval(state)
A := Actions(state)
if state is a MAX node then return  H-Minimax(Result(state, a), depth+1)
if state is a MIN node then return  H-Minimax(Result(state, a), depth+1)

maxa∈A

mina∈A

7



CHESS POSITIONS: HOW TO EVALUATE

8



WEIGHTED LINEAR EVALUATION FUNCTIONS

A very common evaluation function is to use a weighted sum of features:

This relies on a strong assumption: all features are independent of each other
which is usually not true, so the best programs for chess 
(and other games) also use nonlinear feature combinations

 
The weights can be calculated using machine learning algorithms, 
but a human still has to come up with the features.

using recent advances in deep machine learning, 
the computer can learn the features too

Eval(s) = (s) + (s) + ⋯ + (s) = (s)w1 f1 w2 f2 wn fn ∑
i=1

n

wifi

9



EVALUATION FUNCTIONS

A naive weighted sum of features will not see the difference between these two states.

10



PROBLEMS WITH CUTOFF TESTS
Too simplistic cutoff tests and evaluation functions can be problematic:

e.g., if the cutoff is only based on the current depth
then it might cut off the search in unfortunate positions 
(such as (b) on the previous slide)

 
We want more sophisticated cutoff tests:

only cut off search in quiescent positions
i.e., in positions that are “stable”, unlikely to exhibit wild swings in value
non-quiescent positions should be expanded further

 
Another problem is the horizon effect:

if a bad position is unavoidable (e.g., loss of a piece), but the system can 
delay it from happening, it might push the bad position “over the horizon”
in the end, the resulting delayed position might be even worse

11



DETERMINISTIC GAMES IN PRACTICE

Chess:

DeepBlue (IBM) beats world champion Garry Kasparov, 1997.
Modern chess programs: Houdini, Critter, Stockfish.

Checkers/Othello/Reversi:

Logistello beats the world champion in Othello/Reversi, 1997.
Chinook plays checkers perfectly, 2007. It uses an endgame database 
defining perfect play for all 8-piece positions on the board, 
(a total of 443,748,401,247 positions).

Go:

AlphaGo (Google DeepMind) beats one of the world’s best players, 
Lee Sedol by 4–1, in April 2016.
Modern programs: MoGo, Zen, GNU Go, AlphaGo.

12



GAMES OF IMPERFECT INFORMATION

Imperfect information games

e.g., card games, where the opponent’s initial cards are unknown

typically we can calculate a probability for each possible deal

seems just like having one big dice roll at the beginning of the game

main idea: compute the minimax value of each action in each deal, 
then choose the action with highest expected value over all deals

13



STOCHASTIC GAMES (R&N 5.5)
chance nodes
expected value
expecti-minimax algorithm

14



STOCHASTIC GAME EXAMPLE: BACKGAMMON

15



STOCHASTIC GAMES IN GENERAL
In stochastic games, chance is introduced by dice, card-shuffling, etc.

We introduce chance nodes to the game tree.
We can’t calculate a definite minimax value, 
instead we calculate the expected value of a position.
The expected value is the average of all possible outcomes.

 
A very simple example with coin-flipping and arbitrary values:

16



BACKGAMMON GAME TREE

17



ALGORITHM FOR STOCHASTIC GAMES
The ExpectiMinimax algorithm gives perfect play;
it’s just like Minimax, except we must also handle chance nodes:

 
function ExpectiMinimax(state):

if TerminalTest(state) then return Utility(state)
A := Actions(state)
if state is a MAX node then return  Minimax(state, a)
if state is a MAX node then return  Minimax(state, a)
if state is a chance node then return  Minimax(state, a)

where  is the probability that action a occurs.

maxa∈A

mina∈A

P(a)∑a∈A

P(a)

18



STOCHASTIC GAMES IN PRACTICE
Dice rolls increase the branching factor b:

there are 21 possible rolls with 2 dice
 
Backgammon has ≈20 legal moves:

depth  nodes
 
As depth increases, the probability of reaching a given node shrinks:

value of lookahead is diminished
α-β pruning is much less effective

 
TDGammon (1995) used depth-2 search + very good Eval:

the evaluation function was learned by self-play
world-champion level

4 ⇒ 20 × (21 × 20 ≈ 1.2 ×)3 109

19



REPETITION OF CSP
CONSTRAINT SATISFACTION PROBLEMS (R&N 6.1)

Variables, domains, constraints (unary, binary, n-ary), constraint graph
 

CSP AS A SEARCH PROBLEM (R&N 6.3–6.3.2)
Backtracking search, heuristics (minimum remaining values, degree, least
constraining value), forward checking, maintaining arc-consistency (MAC)

 

CONSTRAINT PROGAGATION (R&N 6.2–6.2.2)
Consistency (node, arc, path, k, …), global constratints, the AC-3 algorithm

20



CSP: CONSTRAINT SATISFACTION PROBLEMS (R&N 6.1)
CSP is a specific kind of search problem:

the state is defined by variables , each taking values from the domain 
the goal test is a set of constraints:

each constraint specifies allowed values for a subset of variables
all constraints must be satisfied

 
Differences to general search problems:

the path to a goal isn’t important, only the solution is.
there are no predefined starting state
o�en these problems are huge, with thousands of variables, 
so systematically searching the space is infeasible

Xi Di

21



EXAMPLE: MAP COLOURING (BINARY CSP)

 

Variables: WA, NT, Q, NSW, V, SA, T

Domains:  = {red, green, blue}
Constraints: SA≠WA, SA≠NT, SA≠Q, SA≠NSW, SA≠V,  

WA≠NT, NT≠Q, Q≠NSW, NSW≠V
Constraint graph: Every variable is a node, every binary constraint is an arc.

Di

22



EXAMPLE: CRYPTARITHMETIC PUZZLE (HIGHER-ORDER CSP)

Variables: F, T, U, W, R, O, 

Domains:  = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints: Alldiff(F,T,U,W,R,O),  O+O=R+10· ,   etc.
Constraint graph: This is not a binary CSP!  

The graph is a constraint hypergraph.

, ,X1 X2 X3

Di

X1

23



CSP AS A SEARCH PROBLEM (R&N 6.3–6.3.2)
 

backtracking search
select variable: minimum remaining values, degree heuristic
order domain values: least constraining value
inference: forward checking and arc consistency

24



ALGORITHM FOR BACKTRACKING SEARCH
At each depth level, decide on one single variable to assign:

this gives branching factor , so there are  leaves
Depth-first search with single-variable assignments is called backtracking search:

 
function BacktrackingSearch(csp):

return Backtrack(csp, { })
 
function Backtrack(csp, assignment):

if assignment is complete then return assignment
var := SelectUnassignedVariable(csp, assignment)
for each value in OrderDomainValues(csp, var, assignment):

if value is consistent with assignment:
inferences := Inference(csp, var, value)
if inferences ≠ failure:

result := Backtrack(csp, assignment  {var=value}  inferences)
if result ≠ failure then return result

return failure

b = d dn

∪ ∪

25



IMPROVING BACKTRACKING EFFICIENCY

The general-purpose algorithm gives rise to several questions:

Which variable should be assigned next?
SelectUnassignedVariable(csp, assignment)

In what order should its values be tried?
OrderDomainValues(csp, var, assignment)

What inferences should be performed at each step?
Inference(csp, var, value)

Can the search avoid repeating failures?
Conflict-directed backjumping, constraint learning, no-good sets 
(R&N 6.3.3, not covered in this course)

26



SELECTING UNASSIGNED VARIABLES

Heuristics for selecting the next unassigned variable:

Minimum remaining values (MRV): 
 choose the variable with the fewest legal values 

Degree heuristic (if there are several MRV variables): 
 choose the variable with most constraints on remaining variables 

⟹

⟹

27



ORDERING DOMAIN VALUES

Heuristics for ordering the values of a selected variable:

Least constraining value: 
 prefer the value that rules out the fewest choices 

for the neighboring variables in the constraint graph 
⟹

28



CONSTRAINT PROGAGATION (R&N 6.2–6.2.2)
 

consistency (node, arc, path, k, …)
global constratints
the AC-3 algorithm
maintaining arc consistency

29



INFERENCE: FORWARD CHECKING AND ARC CONSISTENCY
Forward checking is a simple form of inference:

Keep track of remaining legal values for unassigned variables
When a new variable is assigned, recalculate the legal values for its neighbors

Arc consistency:  is ac iff for every  in , there is some allowed  in 
since NT and SA cannot both be blue, the problem becomes 
arc inconsistent before forward checking notices
arc consistency detects failure earlier than forward checking

X → Y x X y Y

30



ARC CONSISTENCY ALGORITHM, AC-3
Keep a set of arcs to be considered: pick one arc  at the time and
make it consistent (i.e., make  arc consistent to ).

Start with the set of all arcs .
 
When an arc has been made arc consistent, does it ever need to be checked again?

An arc  needs to be revisited if the domain of  is revised.
 

function AC-3(inout csp):
initialise queue to all arcs in csp
while queue is not empty:

(X, Y) := RemoveOne(queue)
if Revise(csp, X, Y):

if      then return failure
for each Z in X.neighbors–{Y} do add (Z, X) to queue

 
function Revise(inout csp, X, Y):

delete every x from  such that there is no value y in  satisfying the constraint 

(X, Y)

X Y

{(X, Y), (Y, X), (X, Z), (Z, X), …}

(X, Y) Y

= ∅DX

DX DY CXY

31



AC-3 EXAMPLE

remove add queue
  1234 1234 1234   A<B, B<C, C>B, B>A

A<B 123 1234 1234   B<C, C>B, B>A
B<C 123 123 1234 A<B C>B, B>A, A<B
C>B 123 123 234   B>A, A<B
B>A 123 23 234 C>B A<B, C>B
A<B 12 23 234   C>B

C>B 12 23 34  
           

DA DB DC

∅

32



COMBINING BACKTRACKING WITH AC-3

What if some domains have more than one element a�er AC?

We can resort to backtracking search:

Select a variable and a value using some heuristics 
(e.g., minimum-remaining-values, degree-heuristic, least-constraining-value)
Make the graph arc-consistent again
Backtrack and try new values/variables, if AC fails
Select a new variable/value, perform arc-consistency, etc.

Do we need to restart AC from scratch?

no, only some arcs risk becoming inconsistent a�er a new assignment
restart AC with the queue , 
i.e., only the arcs  where  are the neighbors of 
this algorithm is called Maintaining Arc Consistency (MAC)

{( , X)|X → }Yi Yi

( , X)Yi Yi X

33



CONSISTENCY PROPERTIES

There are several kinds of consistency properties and algorithms:

Node consistency: single variable, unary constraints (straightforward)

Arc consistency: pairs of variables, binary constraints (AC-3 algorithm)

Path consistency: triples of variables, binary constraints (PC-2 algorithm)

-consistency:  variables, -ary constraints (algorithms exponential in )

Consistency for global constraints:

special-purpose algorithms for different constraints, e.g.:
Alldiff( ) is inconsistent if 
Atmost( ) is inconsistent if 

k k k k

, … ,X1 Xm m > | ∪ ⋯ ∪ |D1 Dm

n, , … ,X1 Xm n < min( )∑i Di

34



MORE ABOUT CSP
LOCAL SEARCH FOR CSPS (R&N 6.4)

PROBLEM STRUCTURE (R&N 6.5)

35



LOCAL SEARCH FOR CSPS (R&N 6.4)
Given an assignment of a value to each variable:

A conflict is an unsatisfied constraint.
The goal is an assignment with zero conflicts.

 
Local search / Greedy descent algorithm:

Start with a complete assignment.
Repeat until a satisfying assignment is found:

select a variable to change
select a new value for that variable

36



MIN CONFLICTS ALGORITHM
Heuristic function to be minimized: the number of conflicts.

this is the min-conflicts heuristics
Note: this does not always work!

it can get stuck in a local minimum
 

function MinConflicts(csp, max_steps)
current := an initial complete assignment for csp
repeat max_steps times:

if current is a solution for csp then return current
var := a randomly chosen conflicted variable from csp
value := the value v for var that minimises Conflicts(var, v, current, csp)
current[var] = value

return failure

37



EXAMPLE: -QUEENS (REVISITED)

Do you remember this example?

Put  queens on an  board, in separate columns
Conflicts = unsatisfied constraints = n:o of threatened queens
Move a queen to reduce the number of conflicts

repeat until we cannot move any queen anymore
then we are at a local maximum — hopefully it is global too

n

n n × n

38



EASY AND HARD PROBLEMS
Two-step solution using min-conflicts for an 8-queens problem:

The runtime of min-conflicts on n-queens is independent of problem size!
it solves even the million-queens problem ≈50 steps

Why is n-queens easy for local search?
 because solutions are densely distributed throughout the state space!

39



VARIANTS OF GREEDY DESCENT

To choose a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of conflicts.
Select a variable that participates in the most conflicts. 
Select a value that minimizes the number of conflicts.
Select a variable that appears in any conflict. 
Select a value that minimizes the number of conflicts.
Select a variable at random. 
Select a value that minimizes the number of conflicts.
Select a variable and value at random; 
accept this change if it doesn’t increase the number of conflicts.

All local search techniques from section 4.1 can be applied to CSPs, e.g.:

random walk, random restarts, simulated annealing, beam search, …

40



PROBLEM STRUCTURE (R&N 6.5)
 

independent subproblems, connected components
tree-structured CSP, topological sort
converting to tree-structured CSP, cycle cutset, tree decomposition

41



INDEPENDENT SUBPROBLEMS

Tasmania is an independent subproblem:
there are efficient algorithms for finding
connected components in a graph

Suppose that each subproblem has  variables
out of  total. The cost of the worst-case solution 
is , which is linear in .

E.g., :
 = 4 billion years at 10 million nodes/sec

If we divide it into 4 equal-size subproblems:
 =0.4 seconds at 10 million nodes/sec

 
Note: this only has a real effect if the subproblems are (roughly) equal size!

c

n

n/c ⋅ dc n

n = 80, d = 2, c = 20

280

4 ⋅ 220

42



TREE-STRUCTURED CSP
A constraint graph is a tree when any two variables are connected by only one path.

then any variable can act as root in the tree
tree-structured CSP can be solved in linear time, in the number of variables!

 
CSP is directed arc-consistent if:

there is an orderning of variables  such that
every  is arc-consistent with each  for all 

 
To solve a tree-structured CSP:

first pick a variable to be the root of the tree
then find a topological sort of the variables (with the root first)
finally, make each arc consistent, in reverse topological order

 

, , … ,X1 X2 Xn

Xi Xj j > i

43



SOLVING TREE-STRUCTURED CSP

function TreeCSPSolver(csp)
n := number of variables in csp
root := any variable in csp

 := TopologicalSort(csp, root)
for j := n, n–1, …, 2:

MakeArcConsistent(Parent( ), )
if it could not be made consistent then return failure

assignment := an empty assignment
for i := 1, 2, …, n:

assignment[ ] := any consistent value from 
return assignment

 
What is the runtime?

to make an arc consistent, we must compare up to  domain value pairs
there are  arcs, so the total runtime is 

…X1 Xn

Xj Xj

Xi Di

d2

n−1 O(n )d2

44



CONVERTING TO TREE-STRUCTURED CSP
Most CSPs are not tree-structured, but sometimes we can reduce a problem to a tree

one approach is to assign values to some variables, 
so that the remaining variables form a tree

 

If we assign a colour to South Australia, then the remaining variables form a tree
a (worse) alternative is to assign values to {NT,Q,V}

Why is {NT,Q,V} a worse alternative?
because then we have to try 3×3×3 different assignments, 
and for each of them solve the remaining tree-CSP

45



SOLVING ALMOST-TREE-STRUCTURED CSP

function SolveByReducingToTreeCSP(csp):
S := a cycle cutset of variables, such that csp–S becomes a tree
for each assignment for S that satisfies all constraints on S:

remove any inconsistent values from neighboring variables of S
solve the remaining tree-CSP (i.e., csp–S)
if there is a solution then return it together with the assignment for S

return failure

 
The set of variables that we have to assign is called a cycle cutset

for Australia, {SA} is a cycle cutset and {NT,Q,V} is also a cycle cutset
finding the smallest cycle cutset is NP-hard, 
but there are efficient approximation algorithms

46



TREE DECOMPOSITION
Another approach for reducing to a tree-CSP is tree decomposition:

divide the original CSP into a set of connected subproblems, 
such that the connections form a tree-structured graph
solve each subproblem independently
since the decomposition is a tree, we can solve the main problem 
using directed arc consistency (the TreeCSPSolver algorithm)

47


